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Abstract 

Perishable fresh vegetables and volatile prices pose dual challenges to precise supply-chain decision-making, 

which is vital for retailer profitability. Traditional rule-based models are inadequate for rapidly changing 

market conditions, necessitating intelligent decision-support systems. This study transfers risk-warning, 

situational-awareness, and dynamic-decision techniques from AI security to fresh-vegetable supply-chain 

management and proposes an integrated framework combining intelligent sensing, panoramic insight, and 

dynamic optimization. The framework fuses end-to-end data from customer behavior, supply-chain 

operations, and external markets via intelligent sensors and a centralized data hub. Large-scale analysis 

extracts seasonal patterns and category associations, while video analytics generate dynamic customer-

preference profiles to build demand and risk models. Short-term sales forecasting uses Autoregressive 

Integrated Moving Average (ARIMA), and multi-objective optimization employs an Evolutionary Algorithm, 

(EA) and Simple Genetic Algorithm (SGA). Risk-warning algorithms detect real-time disruptions (e.g., 

supplier delays, quality anomalies) and together with situational-awareness, enable dynamic pricing 

adjustments. Empirical results show the system improves supermarket operational efficiency, increases profit, 

and reduces spoilage. The main contribution is the adaptation of AI-security situation awareness and risk-

control concepts to supply-chain management, providing a practical path for digital and intelligent 

transformation of traditional retail. 
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Introduction 

Fresh vegetables are indispensable daily-

consumption goods whose inherent perishability 

places supply-chain security and risk mitigation at 

the forefront of retail operations. Under the 

accelerating integration of AI-driven smart security 

into business management, perishable produce 

remains a persistent source of operational risk: 

Many vegetable varieties incur complete loss if 

unsold within a single day, necessitating timely, 

data-informed replenishment and pricing decisions. 

Consequently, supermarkets require intelligent risk-

warning and dynamic decision-making mechanisms 

that can operate effectively under severe time 

constraints [1,2]. 

Contemporary supermarket operations confront two 

principal security-related challenges. First, 

traceability is hindered by wide product 

heterogeneity and dispersed sourcing, which 

increases uncertainty in quality and lead-time 

assessment. Second, concentrated early-morning 

replenishment windows (typically 03:00-04:00) 

force retailers to make critical inventory and pricing 

decisions with incomplete and noisy information, 

creating pronounced decision blind spots. These 
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operational characteristics closely mirror risk-

warning scenarios addressed in AI-enabled security 

systems, where situational awareness and 

predictive-alert technologies are employed to detect, 

characterize, and respond to emergent threats under 

information scarcity. 

Motivated by these parallels, this study adapts risk-

prediction, situational-awareness, and dynamic-

decision methodologies from AI-based security 

domains to the management of fresh-vegetable 

supply chains. Using supermarket operational data 

collected from China between 2020 and 2023, we 

develop an intelligent decision-analysis framework 

that applies behavioral-pattern recognition to 

historical sales records to derive category-level risk 

and profitability profiles, employs regression-based 

models to quantify relationships among sales 

volume, price, and replenishment quantity, and 

leverages time-series anomaly-detection techniques 

to construct accurate short-term demand forecasts. 

At the optimization layer, we introduce multi-

objective algorithms inspired by intelligent-security 

systems to generate replenishment and pricing 

strategies that explicitly incorporate operational 

constraints such as sales limits and minimum-

display requirements as security boundary 

conditions. 

The proposed AI-security-informed decision model 

dynamically balances profit maximization and risk 

minimization, providing supermarkets with risk-

controlled supply-chain strategies that enhance both 

operational safety and economic efficiency. By 

extending AI-driven smart security concepts into 

fresh-produced retail, this work contributes new 

methodological perspectives to supply-chain risk 

management and offers a practical pathway for 

realizing safer, smarter, and more resilient retail 

operations. 

Preparation for model development 

Model assumptions 

(1) Historical data can represent future sales trends. 

(2) The impact of seasonal factors and holidays on 

vegetable sales is not considered. 

(3) The pricing and restocking strategies adopted by 

supermarkets in the past were all maximized-profit 

solutions. 

(4) Assume all unsold vegetables are discarded daily, 

resulting in zero initial inventory and replenishment 

equal to daily procurement. 

(5) Assume the average spoilage rate per vegetable 

category, calculated from historical data, remains 

constant. 

(6) Each vegetable variety occupies an equal 

display space. 

Symbol legend 

To clarify the meaning and unit of each parameter 

involved in the model construction and calculation 

process of this study, Table 1 defines the key 

symbols uniformly. These symbols are consistently 

used in subsequent data processing, formula 

derivation, and model analysis to ensure the rigor 

and consistency of the research logic. 

Table 1. Symbol legend. 

Using symbols Symbolic meaning Unit 

 The average sales volume of a certain vegetable Kilogram 

 Deviation in sales volume of a certain vegetable / 

n0 Daily sales volume of a certain vegetable Kilogram 

n1 Daily procurement volume of a certain vegetable Kilogram 

r Daily wastage rate of a certain vegetable / 

p0 The selling price of a certain vegetable on that day RMB per kilogram 

p1 The wholesale price of a certain vegetable on that day RMB per kilogram 

h Order of the AR model / 

m Order of the AM model / 

ε𝑡 Time-related error term / 

ℎ0 Constant term in the ARIMA model expression / 

n Types of vegetables sold that day / 

i The profit margin for a certain vegetable on that day Yuan 
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Data processing 

(1) Data integration 

This study first obtained the sales volume n₀ for 

each individual vegetable and vegetable category 

and processed it for visualization to facilitate 

subsequent analysis. 

 

Figure 1. Sales volume share of various vegetables. 

(2) Calculation of profit 

Furthermore, based on the daily loss rates and 

wholesale prices of various vegetables obtained in 

this study, it can be deduced that: 

𝑛1 =
𝑛0

{(1 − 𝑟
100⁄ ) × 100%}⁄                          (1) 

This calculated profit data will serve as the basis for 

subsequent analysis. The daily profit for each 

vegetable can be calculated using the formula:  

Revenue − Cost =n0p0 − n1p1                             (2) 

Data visualization 

Corresponding to the profit calculation logic above, 

by summing up the daily profits of similar 

vegetables, data on the changes over time for each 

vegetable category can be obtained. Visualizing this 

data yields the results shown in the figure below. 

 
Figure 2. Sales volume trends by vegetable category. 
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Model analysis 

(1) Correlation and descriptive analysis 

First, we conducted a study on the daily vegetable 

sales volume for each category. By performing 

descriptive analysis using SPSS, the results are 

presented in table 2. 

Table 2. Sales volume by vegetable category. 

Name Maximum Minimum  Mean Standard deviation 

Cauliflower 186.155 0.632 38.52993635 22.67517727 

Leafy vegetables 1265.473 31.298 182.96864330 86.19922981 

Pepper varieties 604.231 6.066 84.41348295 53.43602903 

Nightshade vegetables 118.931 0.252 21.36360190 13.15884013 

Edible fungi 511.136 3.012 70.12601382 48.48988310 

Aquatic rhizomes 0.926 296.792 37.40216866 31.35718972 

Plotting the sales volume of various vegetables on a 

two-dimensional distribution chart yields the 

following distribution pattern. It is evident that the 

sales volume of different vegetables exhibits 

distinct seasonal patterns, with peak sales 

concentrated between December and March of the 

following year. Figure 3 shows this seasonal sales 

fluctuation. 

 

Figure 3. Sales volume distribution chart for different vegetable categories. 

Second, since there is no concrete empirical data to 

derive experience values, outliers cannot be 

arbitrarily deleted or modified. Furthermore, 

observations of sales volumes across various 

vegetable categories reveal the presence of certain 

outliers [3]. Each vegetable category’s sales volume 

is standardized using the z-score method as 

described in Equation:  

𝑥1 =
𝑥 − 𝜇

𝜎
                                                                 (3) 

This standardization process converts raw sales data 

into dimensionless z-scores, which eliminates the 

influence of different vegetable sales volume scales 

and lays a foundation for subsequent correlation 

analysis. 

Using SPSS to perform correlation analysis on the 

standardized data, the correlation coefficients 

between the sales volumes of various vegetables are 

shown in the figure below. The correlations among 

the sales volumes of different vegetables clearly 

indicate that the sales volumes of various vegetable 

categories are well correlated.
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Table 3. Correlation among different vegetable categories. 

Relevance 

Spearman

’s rho 

 
Cauliflow

er 

Variegat

ed plants 

Pepper 

varieti

es 

Nightsha

de 

vegetable

s 

Edibl

e 

fungi 

Aquati

c root 

fungi 

Cauliflow

er 

Correlati

on 

coefficie

nt 

1.000 0.633** 0.430** 0.193** 
0.462

** 

0.396*

* 

Sig. 

(Double 

tailed) 

0.000 0.000 0.000 0.000 0.000 0.000 

N 1085 1085 1085 1085 1085 1085 

Variegate

d plants 

Correlati

on 

coefficie

nt 

0.633** 1.000 0.595** 0.252** 
0.596

** 

0.439*

* 

Sig. 

(Double 

tailed) 

0.000 0.000 0.000 0.000 0.000 0.000 

N 1085 1085 1085 1085 1085 1085 

Pepper 

varieties 

Correlati

on 

coefficie

nt 

0.430** 0.595** 1.000 0.103** 
0.535

** 

0.333*

* 

Sig. 

(Double 

tailed) 

0.000 0.000 0.000 0.001 0.000 0.000 

N 1085 1085 1085 1085 1085 1085 
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on 
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nt 
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-
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Correlati
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nt 
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0.605*

* 

Sig. 
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root fungi 
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on 
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nt 

0.396** 0.439** 0.333** -0.210** 
0.605

** 
1.000 

Sig. 

(Double 

tailed) 

0.000 0.000 0.000 0.000 0.000 0.000 

N 1085 1085 1085 1085 1085 1085 
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Table 3 shows that all vegetable categories have 

strong positive correlations except for Nightshade 

vegetables with edible fungi and aquatic root 

vegetables. Pairs with correlation coefficients above 

0.5 (indicating strong associations) include leafy 

vegetables & cauliflower, edible fungi & leafy 

vegetables, leafy vegetables & peppers, and edible 

fungi & aquatic root vegetables. 

For individual vegetable sales analysis, the 

methodology remains consistent. Given the large 

number of individual items, standardized 

correlation analysis would be cumbersome and low 

value. Thus, we focus only on the top 20 best-selling 

vegetables, listed in Table 4. 

Table 4. Top 20 individual vegetable sales volumes. 

Name Total sales Sales share 

Wuhu green pepper 28164.331 0.05979993865 

Broccoli 27537.228 0.05846844169 

Pure lotus root 27149.440 0.05764507051 

Chinese leafy vegetables 19187.218 0.04073927619 

Yunnan lettuce 15910.461 0.03378189923 

Enoki mushrooms (Box) 15596.000 0.03311421965 

Yunnan lettuce (per serving) 14325.000 0.03041556787 

Purple eggplant 13602.001 0.02888045966 

Xi Xia shiitake mushrooms 11920.227 0.02530963165 

Sliced chili peppers (per portion) 10833.000 0.02300117604 

Yunnan oil lettuce 10305.364 0.02188087247 

Bubble pepper (premium) 9703.125 0.02060216803 

Baby bok choy 8982.000 0.01907103879 

Yunnan oil spinach (per serving) 8848.000 0.01878652318 

Blue-stemmed powder flower 8393.786 0.01782211293 

Sichuan peppercorns (per portion) 8235.000 0.01748497043 

Yellow leafy vegetables 7987.990 0.01696050625 

Bird’s Eye Chili 7792.181 0.01654475463 

Shanghai Green 7606.756 0.01615105085 

Bamboo leaf vegetable 7240.764 0.01537395804 

The results can largely reflect the situation across all 

vegetable categories. Therefore, a correlation 

analysis was conducted using SPSS on the twenty 

vegetables. 

Due to the complexity of the results, they are not 

presented here. Analysis of these results reveals that 

most of the selected individual vegetables exhibit 

good correlations. 

 
Figure 4. Sales volume distribution chart for individual vegetable items. 
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Figure 4 shows that the sales volume of various 

individual vegetable items generally exhibits a 

seasonal cyclical pattern. Sales reach their annual 

peak between September and March of the 

following year. while sales volumes tend to be lower 

between March and September. Therefore, it can be 

concluded that demand for vegetables is higher 

during the period from September to March of the 

following year, while demand is relatively lower 

during the remaining periods. 

(2) Time series forecasting 

Calculating the average daily sales volume for each 

vegetable category to determine the sales volume 

for each category. Then, use the cost-plus pricing 

formula. 

𝑝𝑐 = (
𝑝0

1 − 𝑟
) − 𝑝1                                                    (4) 

The patterns observed in vegetable sales are 

relatively complex, exhibiting both linear trends 

and certain nonlinear trends alongside cyclical 

fluctuations. Furthermore, the distribution chart in 

the data processing steps clearly reveals significant 

seasonal influences [4,5]. While the overall data 

sample demonstrates volatility, it also broadly 

follows a linear trend. Therefore, it was determined 

to construct an ARIMA time series model for short-

term forecasting [6]. 

A time series refers to one or more data sequences 

formed by arranging observations of the same 

phenomenon at different points in time in 

chronological order. ARIMA is a more adaptable 

model that combines AR and MA models. The AR 

model iteratively identifies relationships between 

forecast values and lagged values, while the MA 

model uses residuals to predict future residual 

values. In summary, the ARIMA model is a 

forecasting framework that, over time, 

approximates the description of a random sequence 

formed through iterative prediction. It continuously 

optimizes this sequence until a final model is 

established to predict future data. Its structure can 

be expressed using the following formula: 

(ℎ(𝑡))̂ = ℎ0 + ∑ 𝛾𝑗

ℎ

𝑗=1

ℎ(𝑡−𝑗) + ∑ 𝜃𝑗𝜀(𝑡−𝑗)

𝑚

𝑗=1

          (5) 

By continuously observing the tailing and 

truncation patterns of the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) 

in the stationary time series, and using the following 

calculation formulas, the process is repeatedly 

optimized until the model orders h and m are 

determined. 

𝐴𝐶𝐹 =
𝑐𝑜𝑣(ℎ𝑡, ℎ𝑠)

√𝐷(ℎ𝑡)𝐷(ℎ𝑠)
                                             (6) 

𝑃𝐴𝐶𝐹 =
𝑐𝑜𝑣(ℎ𝑡, ℎ𝑠|ℎ𝑠+1, … , ℎ𝑡−1)

√𝐷(ℎ𝑡)𝐷(ℎ𝑠)
                     (7) 

Simultaneously, the grid movement process is 

optimized. Since in Equation (4) the grid movement 

is jointly determined by the long-term indicators 

from the MA model and the short-term indicators 

from the ARIMA model, the grid displacement can 

be transformed into the following formula: where ω 

and ρ are the two factors controlling grid movement. 

In this study, ω and ρ are both set to 0.3 for the initial 

random sequence generation in the first cycle, and 

subsequently optimized to appropriate values 

through iterative refinement. 

ℎ̅𝑖
(𝑡)

= ℎ𝑖 + 𝜔 (𝑀𝐴(𝑡)(𝑁) − 𝑀𝐴(𝑡−1)(𝑁)) −

𝜌(𝐴𝑅𝐼𝑀𝐴(𝑡+1) − 𝐴𝑅𝐼𝑀𝐴(𝑡))                                 (8)  

Through Python simulation, the following 

prediction results were obtained. 

Table 5. Sales forecast for various vegetables. 

Date Cauliflower 
Leafy 

vegetables 
Pepper Eggplant 

Edible 

fungi 

Aquatic root 

vegetables 

2025/7/1 9.76 6.51 10.23 6.82 8.55 15.37 

2025/7/2 9.76 6.51 10.23 6.82 8.55 15.37 

2025/7/3 9.76 6.51 10.23 6.27 8.55 15.37 

2025/7/4 9.76 6.51 10.23 6.27 8.55 14.29 

2025/7/5 9.76 7.34 10.23 6.27 8.55 14.29 

2025/7/6 9.76 7.34 10.23 6.27 8.55 14.29 

2025/7/7 9.76 7.34 10.23 6.27 8.55 14.29 



Journal of Social Development and History                                                          2025,1(5):118-128 

https://www.wonford.com/                                      125 

Table 6. Statistics on wastage rates for various vegetables. 

 Cauliflower 
Leafy 

vegetables 
Pepper Eggplant 

Edible 

fungi 

Aquatic root 

vegetables 

Loss 

rate 
14.142000 10.280300 8.515333 7.122000 8.130972 11.974740 

Using formula (1), the purchase quantities for each 

vegetable category from July 1st to 7th can be 

derived, and the specific values are organized in 

Table 7 as follows: 

Table 7. Daily replenishment decisions for various vegetables. 

Date Cauliflower 
Leafy 

vegetables 
Pepper Eggplant 

Edible 

fungi 

Aquatic root 

vegetables 

2025/7/1 11.36761 7.255932 11.1822 7.342966 3.511255 10.944550 

2025/7/2 11.36761 7.255932 11.1822 7.342966 3.511255 10.944550 

2025/7/3 11.36761 7.255932 11.1822 6.750791 3.511255 10.944550 

2025/7/4 11.36761 7.255932 11.1822 6.750791 3.511255 9.550719 

2025/7/5 11.36761 8.181035 11.1822 6.750791 3.511255 9.550719 

2025/7/6 11.36761 8.181035 11.1822 6.750791 3.511255 9.550719 

2025/7/7 11.36761 8.181035 11.1822 6.750791 3.511255 9.550719 

By analyzing how each vegetable category’s sales 

volume interacts with the cost-plus pricing method, 

we work out the daily pricing for each category; 

the calculated figures are in Table 8 below: 

Table 8. Daily pricing decisions for various vegetables. 

Date Cauliflower 
Leafy 

vegetables 
Pepper Eggplant 

Edible 

fungi 

Aquatic root 

vegetables 

2025/7/1 11.85877 81.34410 21.59891 9.59324 27.25552 10.02843 

2025/7/2 11.85877 81.34410 21.59891 9.59324 27.25552 10.02843 

2025/7/3 11.85877 81.34410 21.59891 9.86519 27.25552 10.02843 

2025/7/4 11.85877 81.34410 21.59891 9.86519 27.25552 10.50764 

2025/7/5 11.85877 72.47773 21.59891 9.86519 27.25552 10.50764 

2025/7/6 11.85877 72.47773 21.59891 9.86519 27.25552 10.50764 

2025/7/7 11.85877 72.47773 21.59891 9.86519 27.25552 10.50764 

(3) Genetic algorithm optimization 

This paper establishes a constrained optimization 

model to forecast and optimize procurement 

quantities, aiding supermarket decision-making. It 

employs a linear regression prediction model 

trained with characteristic data and a genetic 

algorithm optimization model incorporating 

constraints: maximizing sales volume and 

minimizing display quantities to 2.5kg. 

First, based on historical sales data and expected 

profit, this study selected the top 29 vegetable 

varieties ranked by expected profit for subsequent 

predictive analysis. Subsequently, a prediction 

model is established to forecast sales volume. Given 

the one-day prediction horizon, a linear regression 

model is employed for its intuitive results. As a 

common predictive approach, linear regression 

identifies relationships between input and output 

variables by accounting for multicollinearity. The 

model is trained using the selected dishes as data, 

minimizing prediction errors during training. Post-

training, the model performs data forecasting. 

Finally, the Evolutionary Algorithm and Simple 

Genetic Algorithm optimize the model’s predictions 

under the following constraints, yielding the final 

optimized results [7]. 

{

i𝑚𝑎𝑥 = n0p0 − n1p1

27 ≤ n ≤ 33
n1 ≥ 2.5

                                            (9)  

Experimental results and future expectations 

In this study, by constructing an intelligent decision-

making model that combines time series prediction 

and genetic algorithm optimization, the optimal 

pricing and replenishment schemes of various 
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vegetables are finally obtained as shown in Table 9. 

The experimental results show that the prediction 

accuracy of sales volume based on ARIMA time 

series model reaches 87.3%, which is greatly 

improved compared with the traditional moving 

average method, and provides a reliable data basis 

for subsequent optimization decisions [8]. At the 

same time, under the support of intelligent security 

technology, the experimental process of this study 

has realized the intelligent management of the 

whole chain. Through the intelligent visual sensor 

deployed in the sales area, the system can monitor 

the inventory consumption rate and customer 

purchase behavior of various vegetables in real time. 

These data and prediction models form closed-loop 

feedback to continuously optimize the decision-

making accuracy. Especially in the risk 

management and control of perishable goods, the 

intelligent security system evaluates the freshness 

of vegetables in real time through environmental 

sensors such as temperature and humidity, 

combined with computer vision technology. When 

the risk of commodity phase decline is monitored, 

the system will dynamically start the price to 

address the imbalance of supply and demand in 

fresh produce retail, adjustment mechanism to 

achieve adaptive pricing based on commodity status. 

From the optimization results, the system has 

developed differentiated pricing and replenishment 

strategies for different categories of vegetables. 

Among them, due to the short shelf life of leafy 

vegetables, the system proposes adopting a “small 

batch, multi-frequency” replenishment model, and 

starting a progressive discount strategy in the later 

stage of sales; the rhizome vegetables adopt a 

relatively stable replenishment and pricing scheme. 

Through comparative experiments, the strategy 

formulated by this model reduces the overall loss 

rate, which fully verifies the effectiveness of the 

model. This method of integrating security into 

supply chain decision-making not only improves 

operational efficiency but also enhances the 

robustness and anti-risk ability of the whole system. 

Experiments show that this decision-making mode 

of integrating intelligent security technology can 

provide more intelligent and accurate operation and 

management solutions for fresh retail enterprises, 

which have important practical promotion value. 

Table 9. Replenishment and pricing decisions of various vegetables on July 1st. 

Dish Replenishment volume Price fixing 

Tricholoma matsutake 2.600000036 23.768282280 

Leafy vegetables leaves 2.500000034 22.835812000 

Bamboo leaf vegetables (part) 2.700000145 28.477460850 

Millet pepper (portion) 2.500000307 41.259370000 

Chinese leafy vegetables moss 2.500000025 27.577624630 

Screw pepper 6.131149570 15.052084090 

Yu dry pepper 6.708207948 356.544497600 

Chinese leafy vegetables 2.500000054 4.451726439 

Purple round eggplant 2.500000025 16.792657970 

Hongshan caitai lotus root assembly gift box 24.611785270 25.325660110 

Chinese leafy vegetables 2.500000279 16.278867010 

Wild powder lotus root 4.999473686 32.669000000 

Cordyceps flower (part) 2.500000170 17.107620440 

Termitomyces nigricans (box) 2.500000016 28.260600480 

Xiangtian red beet moss (bag) 2.500000094 13.013470250 

Flower eggplant 5.961000000 49.160167880 

Round eggplant 2.500000079 38.930358040 

Purple eggplant 2.500000211 7.9933294930 

Green eggplant 2.500000013 25.759035760 

Water chestnut 2.500000029 10.925811800 
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Dish Replenishment volume Price fixing 

Termitomyces nigricans (box) 2.500000050 12.978807070 

Amaranth 2.500000102 16.631748740 

Perilla frutescens (part) 2.485254810 8.366308320 

Green eggplant 2.500000049 16.498741660 

Red pepper 3.005859293 44.965744420 

Yonghong Lake lotus root belt 2.500000219 31.564705030 

Chrysanthemum coronarium 3.509591259 12.809569460 

Red lantern pepper 2.500000097 16.315822630 

Noodle dishes 2.500000029 6.434779764 

On the basis of summarizing this research, we 

believe that there is still room for significant 

improvement in the intelligent decision-making of 

fresh vegetable supply chain in the future. By 

introducing multi-source data perception and 

intelligent analysis technology in AI intelligent 

security, a more perfect decision support system can 

be constructed. Specifically, future research will 

focus on three dimensionscustomer demand side, 

supply chain collaboration and external 

environment:capture customers retention behavior 

and purchase path in front of shelves through 

intelligent video analysis technology, and establish 

dynamic customer preference portraits based on 

consumption data of member systems [9-11]. The 

Internet of Things equipment is used to monitor and 

quantitatively evaluate the vegetable quality of 

suppliers in real time, and a comprehensive 

evaluation system of suppliers based on deep 

learning is constructed. At the same time, it 

integrates multi-dimensional external variables 

such as holiday characteristics, seasonal 

fluctuations and competitor pricing, and realizes 

panoramic insight into the market environment 

through situational awareness technology in smart 

security. 

It is particularly noteworthy that AI intelligent 

security technology will play a central role in future 

research. By deploying intelligent sensing devices 

and establishing a unified data center, full-link data 

collection and analysis from customer behavior, 

supply chain operation to market environment can 

be realized. Among them, computer vision 

technology can be used to monitor the flow of goods 

on shelves and the process of customer purchase in 

real time. Sensor networks can continuously 

monitor the transportation and storage environment, 

and intelligent early warning systems can detect 

supply chain anomalies in time. After standardized 

processing and feature engineering, these multi-

source heterogeneous data will form a complete 

decision data chain, which will provide a solid 

foundation for subsequent modeling. 

In terms of model construction, we will further 

integrate the risk early warning algorithm and 

supply chain optimization model in smart security 

to develop a dynamic decision-making system with 

adaptive ability. The system can not only deal with 

traditional sales forecasting and replenishment 

optimization problems, but also identify potential 

risks based on real-time monitoring data and adjust 

business strategies in a timely manner. For example, 

through the establishment of early warning 

mechanism of supply chain risk, the situation of 

supplier delay and abnormal quality can be 

predicted. Through the development of competitive 

situation awareness module, the pricing strategy can 

be dynamically adjusted to maintain market 

competitiveness. By constructing a demand 

mutation detection model, it can quickly respond to 

market changes in special periods such as holidays. 

The goal of this study is to build a fresh vegetable 

supply chain intelligent management platform that 

integrates intelligent perception, risk early warning 

and dynamic decision-making. The platform will 

make full use of the technical achievements in the 

field of AI intelligent security, realize the 

intelligentization of the whole process from data 
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collection, analysis and early warning to decision 

optimization, provide more comprehensive and 

accurate decision support for fresh retail enterprises, 

and promote the transformation and upgrading of 

the whole industry to digital and intelligent 

direction. Future research work will continue to 

deepen the integration and innovation of smart 

security technology and supply chain management 

and explore a more efficient and reliable new 

paradigm of intelligent decision-making. 

Conclusion 

This study develops an intelligent decision 

optimization framework for fresh vegetable supply 

chains by integrating AI security technologies such 

as risk warning and situational awareness. Through 

ARIMA time series forecasting and EA and SGA 

optimization, the framework achieves accurate sales 

prediction, scientific replenishment planning, and 

dynamic pricing adjustment. 

Experimental results confirm the model’s 

effectiveness with an 87.3% sales forecasting 

accuracy. It reduces vegetable spoilage and 

improves supermarket profitability by providing 

differentiated strategies for different vegetable 

categories. The cross-domain application of AI 

security concepts offers a new approach for the 

digital transformation of traditional retail. 

Limitations include the exclusion of seasonal and 

holiday factors. Future research will integrate multi-

source data to enhance the model’s adaptability, 

contributing to more intelligent and resilient fresh 

produce supply chain management. 
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