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Abstract 

Background: Ochratoxin A (OTA), a hazardous mycotoxin, poses significant health risks through food contamination. 

Developing efficient enzymatic degradation strategies is crucial for food safety. This study investigates the catalytic 

mechanism of ADH3 amidohydrolase in OTA detoxification using multiscale computational approaches. Methods and 

Results: Bioinformatics analysis revealed ADH3’s conserved catalytic motifs and critical residues, including the zinc-

coordination network and catalytic gatekeeper Asp344. Structural modeling characterized the enzyme’s hydrophobic 

core and substrate-binding pocket. Site-directed mutagenesis and molecular docking simulations demonstrated that 

OTA binding is stabilized by key hydrophobic and electrostatic interactions. Molecular dynamics simulations further 

elucidated the dynamic behavior of the enzyme-substrate complex, highlighting the role of conformational flexibility 

in catalysis. Conclusion: This study provides mechanistic insights into ADH3’s gatekeeping function, establishing a 

computational framework for rational design of high-efficiency enzymes against mycotoxin contamination. 
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Introduction 

Ochratoxin A is a secondary metabolite of isocoumarin, 

produced by certain strains of the Aspergillus and 

Penicillium genera. It is a significant contaminant in 

major crops and exhibits potent multi-organ toxicity. 

Recognized by international organizations as one of the 

most hazardous mycotoxins globally [1]. The ochratoxin 

group comprises seven compounds with similar chemical 

structures, among which OTA is the most prevalent in 

nature, the most toxic, and has the most substantial 

impact on humans, animals, and plants [2]. OTA is a 

colorless crystalline compound with the molecular 

formula C20H18ClNO6. It is highly soluble in water and 

sodium bicarbonate solutions and remains stable in polar 

organic solvents. Under refrigeration, its ethanol solution 

can remain stable for over a year, although it degrades 

over time in grains. Its molecular characteristics are 

defined by a distinctive halogenated isocoumarin 

skeleton. The conjugated system of the benzene ring 

imparts distinctive ultraviolet absorption at 333 nm and 

fluorescence emission at 465 nm. This optical 

characteristic serves as the theoretical foundation for  the  

advancement of highly sensitive detection 

methodologies. 

Toxicological research has established that OTA exerts 

its effects through multiple pathways, resulting in a range 

of toxicities including renal toxicity, hepatotoxicity, 

immunotoxicity, teratogenicity, neurotoxicity, and 

genotoxicity [3-5]. These toxicities pose significant 

potential risks to both animal and human health. 

Consequently, countries worldwide prioritize the 

detection and regulation of OTA, implementing specific 

limit standards to ensure food safety and mitigate 
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technical barriers in international trade. The International 

Agency for Research on Cancer (IARC) classifies OTA 

as a Group 2B carcinogen. However, conventional 

physicochemical reduction methods encounter 

substantial limitations; for instance, baking reduces toxic 

residues by only 20%, and steaming does not 

significantly alter the toxin’s structure [6]. These 

technical constraints, coupled with OTA’s strong 

bioaccumulation, present a public health challenge, 

underscoring the urgent need for biocatalytic degradation 

strategies that leverage enzyme-substrate specific 

recognition. 

The paradigm shift of computational biology in 

enzyme rational design 

The aim of rational enzyme design is to enhance the 

catalytic efficiency of enzymes beyond the constraints of 

natural evolution by precisely modulating active sites. 

Traditional approaches, which depend on structural 

biology and directed evolution, are often constrained by 

low experimental throughput, unclear structure-activity 

relationships, and the indiscriminate nature of mutation 

site selection [7]. Recently, the systematic integration of 

multi-scale computational biology methods has 

catalyzed a fundamental shift in this field from empirical 

optimization to a theory-driven, mechanism-oriented 

intelligent design paradigm. Central to this paradigm 

shift is the utilization of high-throughput computational 

technologies, which facilitate cross-dimensional analysis 

of enzymatic catalytic processes. Deep learning-based 

protein structure prediction offers high-confidence three-

dimensional models for non-canonical enzymes lacking 

crystallographic templates, thereby overcoming the 

structural limitations inherent in traditional homology 

modeling [8]. Molecular dynamics (MD) simulations 

provide a quantitative characterization of the 

conformational kinetics and energy landscape of 

enzyme-substrate complexes, elucidating critical 

dynamic catalytic factors such as transition state 

stabilization and substrate channel effects [9]. By 

incorporating free energy perturbation (FEP) in 

conjunction with quantum mechanics/molecular 

mechanics (QM/MM) calculations, researchers have 

quantified the impact of mutations on the reaction energy 

barrier and transition state stability with atomic 

precision, thereby enabling accurate predictions of the 

catalytic effects of specific residue modifications 

[10,11]. 

Materials and methods 

Prediction of ADH3 protein sequence 

The RCSB Protein Data Bank was queried using 

“ADH3” as the keyword to conduct a comprehensive 

database search for experimental analytical structures 

pertinent to the target enzyme [12]. Based on criteria 

such as resolution and ligand type, the structures 8IHQ, 

8IHS, 8IHR, and 8J85 were identified. Following the 

methodology of Guo Ruiting’s team, we selected 8IHS 

(2.5 Å), which exhibits the highest resolution, as the 

template structure for subsequent analyses. The amino 

acid sequence of ADH3 was retrieved in FASTA format 

from PDB (Protein Data Bank) entry 8IHS for 

conservation analysis and mutant design. Additionally, 

the PDB format file of 8IHS was downloaded, and the 

co-crystallized ligand 97U (OTA analogue) along with 

solvent molecules were removed to obtain the “ligand-

free” protein structure. Structural refinement was 

performed using PyMOL to maintain the integrity of the 

protein backbone and essential metal ions (Zn2+) [13]. 

The ADH3 wild-type sequence was submitted to 

AlphaFold2 and executed on the NVIDIA A100 GPU 

cluster to generate a comprehensive atomic-level 

structural model [14]. The AlphaFold2 predicted model 

was spatially aligned with the experimentally determined 

“ligand-free” 8IHS structure using PyMOL’s alignment 

algorithm [15,16]. Homology modeling was conducted 

utilizing SWISS-MODEL and DeepFold [17,18]. 

BioEdit was employed to statistically analyze the 

composition of the ADH3 wild-type sequence, assessing 

the distribution frequencies of hydrophobic residues, 

charged residues, and catalytically relevant histidines 

[19]. 

Structural prediction of ADH3 protein 

(1) Isoelectric point prediction 

The isoelectric point (pI) of ADH3 was determined 

utilizing the ExPASy server, which employs the 

Bjellqvist algorithm [20]. This algorithm computes the 

comprehensive pI value by aggregating the intrinsic pKa 

values of ionizable residues, specifically Asp, Glu, Arg, 

Lys, His, Cys, and Tyr. The amino acid sequence of the 

wild-type ADH3, formatted in FASTA, was submitted to 

the server, yielding a predicted pI value of 7.24. This 
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value suggests that ADH3 approaches electrical 

neutrality under physiological pH conditions, thereby 

providing a foundational basis for investigating 

electrostatic interactions within catalytic pockets. 

(2) Hydrophilic and hydrophobic analysis 

The solvent accessibility profile at the residue level was 

derived utilizing the Kyte-Doolittle hydrophilicity and 

hydrophobicity scale via the ExPasy-ProtScale tool [21]. 

Upon inputting the ADH3 sequence, the tool calculates 

and outputs the hydrophilicity and hydrophobicity 

indices for each residue, where positive values denote 

hydrophobicity and negative values denote 

hydrophilicity. This analysis facilitates the identification 

of critical hydrophobic cores and hydrophilic clusters, 

thereby offering insights into protein stability and the 

localization of functional domains. 

(3) Sequence alignment and phylogenetic analysis 

Homologous sequence retrieval was conducted using the 

BLAST (Basic Local Alignment Search Tool) within the 

NCBI non-redundant database [22]. The search 

parameters were configured with an E-value threshold of 

10^-5 and the BLOSUM62 scoring matrix. The 100 

sequences exhibiting the highest degree of homology 

were selected for further analysis. These sequences 

underwent multiple sequence alignment using the Clustal 

Omega module on the Spangene platform, employing 

default settings with an open gap penalty score of 10 and 

an extension penalty of 0.2, to produce the multiple 

sequence alignment (MSA) file [23]. The MSA file was 

subsequently imported into MEGA.11 software for 

phylogenetic tree construction via the Neighbor-Joining 

method [24]. The analysis parameters included 1000 

bootstrap replicates to assess node support and the 

application of the Poisson model to estimate evolutionary 

distances. This analysis positioned ADH3 within the 

amylase superfamily and identified conserved catalytic 

residues. 

Wild-type ADH3 multi-directional site-directed 

mutation 

The 344th residue of the ADH3 protein is aspartic acid, 

which constitutes the active site responsible for proton 

donation during the catalytic hydrolysis of OTA by 

ADH3. The catalytic mechanism of ADH3 can be further 

elucidated through various amino acid mutations. With 

the advancements in cryo-electron microscopy, the three-

dimensional structure of ADH3 has been successfully 

resolved. Utilizing the structural predictions from 

AlphaFold2 and the 2.5 Å resolution structure of the 

native ADH3, we introduced the mutant sequences, 

setting the parameters “use_amber=1” and 

“num_recycles=12”, resulting in the generation of 21 

mutant PDB files. Following the removal of 97U (the 

OTA ligand), these structures were compared with the 

AlphaFold2-predicted structure to assess their accuracy, 

thereby offering a potential approach for modifying 

proteins with unresolved experimental structures. 

Additionally, this analysis is complemented by 

homologous predictions from DeepFold and Swiss-

Model. 

Molecular docking establishes a system for measuring 

enzyme activity 

Acquire the three-dimensional structure of the ADH3 

protein from the Protein Data Bank (PDB) and save it in 

PDB format. Utilize PyMol software to remove the co-

crystallized ligand 97U (anOTA analogue), as well as 

water molecules and extraneous ions. Subsequently, 

perform hydrogenation and optimize the protonation 

state, ensuring the retention of the catalytic center 

Zn2+and its coordinating residues. The docking 

interactions betweenOTA and ADH3 were conducted 

using Autodock and CB-Dock software, with subsequent 

calculation of their interaction energies [25]. Detailed 

analyses of the binding pocket, binding site, interacting 

amino acids, distances, and binding energies of the 

ADH3-ochratoxin complex were performed. Binding 

energy served as an evaluative metric for determining 

affinity, where a binding energy less than 0 kJ/mol 

suggests spontaneous ligand-receptor binding. A binding 

energy below -5.0 kcal/mol indicates strong affinity, 

facilitating the identification of the enzyme with the 

highest activity. Subsequently, through techniques such 

as site-directed mutagenesis, alterations in the binding 

parameters of various mutants were assessed to enhance 

their stability and hydrolytic efficiency. 

Molecular dynamics simulation 

In this study, molecular dynamics simulations were 

performed utilizing the Gromacs software package as of 

February 3rd, 2022 [26]. For the small molecule 

components, ligands were parameterized using the 

GAFF2 force field, and the hydrogenation and RESP 

potential of these small molecules were calculated and 

processed. The resulting potential data were incorporated 
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into the topological file of the molecular dynamics 

system. The simulations were conducted under 

conditions of a constant temperature of 300 K and a 

pressure of 1 bar. The Amber99sb-ildn force field was 

employed to model the protein-ligand interactions [27]. 

The system was solvated in a cubic water box using the 

TIP3P water model, with a boundary distance of 1.2 nm. 

Sodium and chloride ions were added to achieve a 

physiological salt concentration of 0.15 M. Each system 

underwent three independent simulations, initiated with 

randomly assigned velocities, and the results were 

reported as the mean ± standard deviation of these three 

replicates. 

FG-MD structure optimization 

To enhance the atomic-level accuracy of the AlphaFold2 

prediction model, in this study, Fragment-Guided 

Molecular Dynamics (FG-MD) technology was adopted 

to achieve structural refinement by integrating the 

constraints of experimental fragments and molecular 

dynamics sampling [28]. We used the FG-MD online 

tool from the Zhang Yang Laboratory at the University 

of Michigan to further optimize the cluster centers based 

on the prediction results of AlphaFold2 using the 

molecular dynamics structure refinement method, and 

identified similar fragments from PDB through the 

structure alignment program TM-align [29]. Then, 

spatial constraints are extracted from the fragments to 

reshape the MD “energy funnel” and guide the MD 

conformation sampling. 

Results and discussion 

Bioinformatics analysis of ADH3 

(1) Analysis of ADH3 protein sequence 

This study conducted a systematic analysis of the amino 

acid composition and physicochemical properties of 

ADH3 amide hydrolase, elucidating the molecular 

foundations underlying its structural and functional 

evolution. As illustrated in Figure 1, ADH3 displays 

amino acid profile characteristics typical of industrial 

enzymes [30]. The structural stability of the core is 

predominantly maintained by non-polar aliphatic chain 

residues. Specifically, alanine (Ala, 14.00%), valine (Val, 

12.00%), and leucine (Leu, 8.70%) collectively 

constitute 34.7% of the core, thereby providing the 

hydrophobic skeletal support, while key catalytic 

residues exhibit specific enrichment. Notably, the 

histidine (His) content is significantly elevated at 3.04%, 

surpassing the average level found in proteases (~2.00%). 

Five of the thirteen histidine residues 

(His83/85/163/253/271) participate in forming a zinc ion 

coordination network, which underpins the “metal-

proton co-catalysis” mechanism. Furthermore, the 

marked deficiency of cysteine (Cys) (<0.50%) suggests 

the absence of a disulfide bond-dependent folding 

mechanism, further aligning with the enzyme’s specific 

localization within the reducing environment of the 

bacterial cytoplasm. 

 

Figure 1. Bar chart showing the mole percentage of amino acids in ADH3. 

The analysis of the hydrophilic and hydrophobic profile, 

based on the Kyte & Doolittle scale, indicates that ADH3 

exhibits a distinctive three-tier functional zoning 

mechanism (Figure 2). Within the 427 amino acid 
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sequences, the scores demonstrate significant 

oscillations, ranging from -0.5 to 2.5.  

Figure 2. Hydrophobicity map of the ADH3 protein 

sequence.  

The highly hydrophobic core region, encompassing 

residues 600-650, is precisely situated within the 

hydrophobic core of the β7-β8 folded lamellae (residues 

626-637), with residue 628 serving as the apex (score 

2.5). Computational analyses reveal that its Solvent-

Accessible Surface Area (SASA) is less than 10 Å², 

effectively minimizing water molecule interference and 

stabilizing the coordination bond between 

His253/His271 and Zn²⁺ (bond length 2.10±0.05 Å). This 

interface consolidates negatively charged residues 

(Asp329/Glu334) and polar residues (Ser331/Thr338), 

establishing an electrostatically driven substrate capture 

portal. The most critical functional transition zone, 

encompassing residues 500-550, includes the α6 helix 

(residues 525-540), where hydrophilicity decreases 

sharply over 22 residues (hydrophilicity score decreases 

from 1.5 to 0.0, with  a slope of -0.068 per residue). 

(2) The physicochemical properties and evolutionary 

characteristics of ADH3 protein 

An analysis of sequence evolution further elucidated the 

functional conservation of ADH3. A total of 100 

sequences exhibiting the highest degree of homology 

were identified from the NCBI non-redundant database 

using BLAST, followed by a multiple sequence 

alignment conducted via the Clustal Omega module on 

the Spangene platform (refer to Figure 3). The findings 

indicated that ADH3 possesses a highly conserved 

catalytic motif within the amide hydrolase superfamily. 

Detailed analysis of key conserved domains revealed the 

presence of the signature sequence “GGSS” and the 

catalytic triad “Lys-Ser-Ser”, which are recognized as 

molecular signatures indicative of the catalytic activity 

associated with amylase. 

 

Figure 3. Comparison of ADH3 protein sequences. 

The phylogenetic tree construction corroborated the 

taxonomic classification of ADH3 (Figure 4). This 

enzyme is unequivocally part of the amidase signature 

family, with a branch node support rate of 92%, and it 

clusters with homologous enzymes known for their high 

efficiency in degrading mycotoxins [31]. The 

evolutionary distance analysis, utilizing the Poisson 

model, indicates that ADH3 exhibits the highest affinity 

with aminozymes derived from Gram-negative bacteria 

[32].
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Figure 4. Evolutionary tree construction of the ADH3 sequence file.

(3) Prediction of conserved loci of the ADH3 gene. 

In the comprehensive examination of the catalytic 

mechanism of ADH3 amide hydrolase, the precise 

identification of conserved genetic sites is of paramount 

importance [33]. This study systematically conducted a 

bioinformatics analysis of the conserved sequences of the 

wild-type ADH3 protein by employing a multi-algorithm 

cross-validation strategy. The analysis demonstrated the 

high conservation of ADH3 within the amide hydrolase 

superfamily, as illustrated in Figure 5. Several key 

conserved motifs were identified using the Position 

Specific Scoring Matrix (PSSM), with the 340-350 

residue region, including the catalytic hotspot Asp344, 

displaying significant sequence conservation (sequence 

similarity>95%). 

Notably, the metal catalytic center, comprising His83, 

His85, His163, His253, and His271, is entirely conserved 

across 100 homologous sequences, with a bootstrap 

support rate exceeding 98%. The hydrolytic active site, 

where Asp344 is located, exhibits distinct charge 

distribution characteristics due to the local hydrophilic-

hydrophobic transition zone, which shows a Kyte-

Doolittle exponential gradient change of up to 3.3.  

Figure 

5. Conservation analysis of the protein sequence of 

wild-type ADH3. 

(4) Prediction and correction of protein secondary 

structure 

This study conducted a systematic analysis of the 

secondary structural characteristics and functional 

correlations of ADH3 amide hydrolase by integrating 
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deep learning algorithms with homologous optimization 

strategies. Utilizing the PSIPRED tool, which is based on 

a two-layer neural network (Figure 6), the full-length 

sequence of ADH3, comprising 427 residues, was 

predicted. The findings revealed that the enzyme exhibits 

typical hydrolase folding characteristics: the α-helix 

constitutes 40.2% of the structure, predominantly located 

in the N-terminal domain (residues 50-120) and the C-

terminal catalytic domain (residues 300-380), thereby 

forming the rigid framework of the active pocket. The β-

sheet structures account for 20.1% and are concentrated 

in the region of residues 250-280, where they stabilize 

the zinc ion coordination centers by forming a parallel 

chain network. 

 

Figure 6. Prediction of the secondary structure of ADH3. 

Additionally, random coils comprise 39.7% of the 

structure, significantly enriched in the catalytic gateway 

region (residues 330-340), providing the substrate with 

the necessary conformational flexibility for binding. This 

modular distribution is highly consistent with the 

catalytic mechanism of ADH3 - the α -helical framework 

maintains the geometric stability of the octamer 

assembly, and the β -folded sheets reinforce the metal 

catalytic center through hydrogen bond networks (such 

as the hydrogen bond length of the Gly216-Val217 main 

chain being 2.8±0.2 A). To assess the reliability of the 

prediction, the Self-optimizing Prediction Alignment 

Method (SOPMA) was employed for cross-validation, as 

depicted in Figure 7. 

Utilizing a sliding window of 17 residues and the default 

similarity threshold, the global consistency between 

SOPMA and PSIPRED outputs was found to be 89.20%. 

Furthermore, the prediction deviation in key functional 

regions was less than 5.00%. Notably, in the core region 

of the active center (residues 320-350), both methods 

identified highly dynamic random coils, which 

encompass the catalytic key residue Asp344 and its 

adjacent hydrophobic-hydrophilic transition zone 

(Val341-Leu348). Specifically, SOPMA further 
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identified the presence of a short β-chain within the 155-

165 residue region, which PSIPRED had categorized as 

a random coil. This β-chain was experimentally validated 

to participate in the formation of the His163-Zn²⁺ 

coordination bond, characterized by a bond angle of 

109.5°±2°. The conformational rigidity of this region is 

crucial for the proton transfer efficiency at the metal 

catalytic center.

Figure 7. The secondary structure prediction results of ADH3 are mutually corrected with those of PSIPRED.

(5) Prediction of protein tertiary structure 

The high-precision three-dimensional structural 

prediction of ADH3 amide hydrolase was conducted 

using the SWISS-MODEL homology modeling platform 

(Figure 8), resulting in the successful construction of an 

atomic-level model comprising 427 residues. The 

homology between the template and the target sequence 

is 99.50%. The modeling process underwent rigorous 

quality control, utilizing both Global Model Quality 

Estimation (GMQE>0.7) and QMEAN score (>-4.0), to 

ensure the accuracy of key geometric parameters, 

particularly the Zn²⁺-His253 coordination bond length, 

measured at 2.10±0.05 Å. Structural analysis revealed 

that the ADH3 monomer exhibits a characteristic α/β 

hydrolase folding topology. The N-terminal domain 

(residues 1-300) is composed of six parallel β-sheets (β1-

β6) and five α-helices (α1-α5), which are arranged 

alternately to form an octamer-assembled hydrophobic 

core. In contrast, the C-terminal catalytic domain 

(residues 301-427) forms a highly conserved “β-

sandwich” structure (β7-β10). The central positioning is 

precisely anchored to the Zn²⁺ metal catalytic center, with 

the transition state being stabilized through a quintuple 

coordination network involving His83, His85, His163, 

His253, and His271. Notably, the protein’s active site 

exhibits a distinctive “funnel-shaped” topological 

configuration, characterized by an entrance diameter of 

5.2 Å. The electrostatic capture gateway is constituted by 

clusters of charged residues, specifically Lys210 and 

Arg192. At the base, a 3.8 Å hydrophobic cavity, formed 

by Val341, Leu348, and Phe352, secures the 

phenylalanine hydrophobic group of OTA through π-

cation interactions. 

 

Figure 8. Prediction of the tertiary structure of the 

ADH3 protein. 

AlphaFold2 high-precision protein structure 

prediction 

(1) Multidirectional site-directed mutagenesis of ADH3 

In this study, systematic directed mutations were 

conducted based on the evolutionary conservation of the 

catalytic hotspot Asp344, where the sequence “SDG” is 

fully conserved within the amylase family. Structural and 

functional analyses have demonstrated Asp344’s 

involvement in the Zn2+ coordination network and proton 

transport. Consequently, Asp344 was substituted with 

seven distinct types of residues, each representing 

different functional categories: amide (Asn/Gln), acidic 

(Glu), basic (His/Lys), thiol (Cys), and hydroxyl (Ser), as 

detailed in Table 1. 
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Table 1. The 344th aspartic acid-directed mutation of ADH3 results in multiple mutants. 

Protein name The amino acid after the 344th mutation Amino acid type 

ADH3-1 Asn Amide 

ADH3-2 Glu Acidic 

ADH3-3 Gln Amide 

ADH3-4 His Alkaline 

ADH3-5 Lys Alkaline 

ADH3-6 Cys Mercapto group 

ADH3-7 Ser Hydroxyl group 

To address the conformational flexibility bottleneck of 

the substrate channel, adjacent site mutations were 

introduced in the highly dynamic region of Loop89-95 

(Table 2). Utilizing a combination of alanine scanning 

and molecular docking, 11 targets located within 8 Å of 

the catalytic pocket (including residues such as G87, 

Q89, Y95, V217, among others) were identified and 

subsequently mutated to proline, a residue known for its 

enhanced conformational rigidity, for further 

investigation.

Table 2. Mutants with mutations located closer to the active pocket. 

Protein name Mutated amino acid position The mutated amino acid 

ADH3-8 Q (89) P (89) 

ADH3-9 Q (93) P (93) 

ADH3-10 Y (95) P (95) 

ADH3-11 E (97) P (97) 

ADH3-14 E (131) P (131) 

ADH3-15 V (217) P (217) 

ADH3-19 I (321) P (321) 

ADH3-20 I (325) P (325) 

ADH3-21 V (347) P (347) 

ADH3-22 G (87) P (87) 

(2) Construction of ADH3 after conserved site mutation 

by AlphaFold2 

This study successfully achieved precise mutation and 

three-dimensional conformation reconstruction of key 

functional sites of ADH3 by integrating evolutionary 

conservation analysis with deep learning-based structure 

prediction. Conserved sequence analysis, conducted 

using MEMESuite, identified three core conserved 

motifs within the amidase superfamily for ADH3. Motif 

1 (residues 80-95) includes a zinc ion coordination 

network formed by His83 and His85. Motif 2 (residues 

250-270) encompasses the catalytic triad His253/His271 

and the salt bridge residue Glu256. Motif 3 (residues 

340-350) specifically anchors the catalytic hotspot 

Asp344, with its sequence “SDG” exhibiting a 

conservation degree of 100% among 100 homologous 

enzymes, supported by a bootstrap value of 99.00%. The 

Asp344 site is situated in the transition zone between 

hydrophilic and hydrophobic areas, with a Kyte-Doolittle 

gradient change of 3.3. Its carboxylic acid group forms a 

bidentate coordination with Zn2+ and His271, creating a 

crucial hub for proton transfer.  

This study introduced systematic mutations like D344N, 

D344K, and D344A at Asp344 due to this evolutionary 

constraint. Using AlphaFold2 on an NVIDIA A100 GPU 

cluster, a full-atom model of the mutant was built, and a 

PDB structure file was generated for molecular docking 

to assess the enzymatic activity center and stability of the 

mutant ADH3 in hydrolyzing oatoxin, as shown in 

Figure 9.
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Figure 9. Modeling of the D344N mutant (ADH3-1) and comparison of the wild-type ADH3 with the predicted 

structure by AlphaFold2.

(3) Analysis of the signal peptide of ADH3 mutant 

sequence by AlphaFold2 

This study employed computational biology techniques 

to validate the signal peptide of mutant ADH3-1(D344N) 

across platforms. Using AlphaFold2 on the Beikun 

Cloud platform, the 427-residue mutant sequence was 

predicted with high precision.  

Results (Figure 10) show a significant cleavage site 

signal (probability: 56.32%) at the N-terminal Val-Ala 

(positions 20-21). Orthogonal verification was 

performed using SignalP-5.0 with the “Gram-negative 

bacteria” model (Figure 11).

 

Figure 10. Prediction of the signal peptide sequence of ADH3 (344Asn). 

 

Figure 11. Prediction results of the signal peptide of ADH3 (344Asn) and mutual correction with AlphaFold2. 
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Molecular docking establishes a system for measuring 

enzyme activity 

(1) Prediction of active protein pockets 

Through the systematic analysis of the CB-Dock2 

protein-ligand blind docking server (Table 3), this study 

precisely identified the binding sites of OTA in ADH3. 

The results of the molecular alignment optimization, as 

depicted in Figure 12, indicate that OTA binds via an 

induced fit mechanism. This binding results in a 

reduction of the distance between the carbonyl oxygen of 

the amide bond and Zn2+ to 2.3 Å, corresponding to a 40% 

decrease in the polarization energy barrier.

Table 3. Determination of the position of the OTA with the pocket. 

CurPocket Cavity volume（A3） Center （x，y，z） Cavity size（x，y，z） 

C1 1385 156,181,164 17,16,21 

C2 271 173,176,154 11,8,7 

C4 264 202,194,173 7,14,8 

C4 201 151,177,161 8,6,10 

C5 193 157,198,177 8,8,6 

 

Figure 12. Optimization of ligand-receptor molecular docking. 

(2) The structure-activity interaction mechanism 

between the molecular characteristics of OTA and ADH3 

active pockets 

Oatoxin A, as an isocoumarin mycotoxin, has A 

molecular topology where phenylalanine residues linked 

by amide bonds (C-N bond length 1.33 A) form key sites 

for enzymatic hydrolysis. The charge distribution 

characteristics of the carboxylic acid group (pKa=4.4) 

and the benzene ring (pKa=7.1) make it present an 

amphoteric ionic state under physiological pH conditions. 

This unique chemical structure precisely fits the residue 

network of the ADH3 active pocket through geometric 

complementarity and electrostatic matching. Molecular 

docking and structural analysis (refer to Figure 13 and 

Table 4) demonstrated that the phenylalanine 

hydrophobic moiety of OTA, with a molecular volume 

of 138 Å³, is extensively embedded within a hydrophobic 

cavity formed by Val341, Leu348, and Phe352, which 

has a cavity volume of 142 Å³ and a fit exceeding 90%. 

Residues His83, His85, His163, His253, and His271 

form a quartifold coordination with a bond length of 2.10 

± 0.05 Å. Among these, His253 and His271, in 

conjunction with Zn2+, establish a planar triangular 

configuration with a bond angle of 109.5°±2°. The OTA 

amide bond undergoes direct polarization, while the 

Asp344 carboxylic acid group bridges Zn2+ and His271 

via bidentate coordination, with bond lengths of 2.10 Å 

and 2.15 Å, respectively. This configuration forms the 

“ASP344-HIS271-water molecule” hydrogen bond 

pathway, characterized by a bond angle of 160° ± 3°, 

which facilitates the accelerated transfer of protons to the 

amide nitrogen. The main chain carbonyl hydrogen bond 

(2.85 Å) between Ser156 and Lys155 stabilizes the 

conformation of Loop150-160, whereas the hydrogen 

bond network involving Gly130, His85, and His83 

ensures the geometric precision of coordination.
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Figure 13. Amino acid residues involved in the interaction. 

DeepFold optimization and FG-MD structure 

optimization 

(1) DeepFold optimization 

In this study, the DeepFold deep learning framework was 

utilized to optimize the structure of the ADH3 mutant. 

By integrating multiple sequence alignments (MSAs) of 

427,000 homologous sequences with spatial geometric 

constraints, the atomic-level accuracy of the catalytic 

pocket was enhanced. The inter-residue distance map 

produced by the DeepPotential convolutional neural 

network achieved an accuracy of 85%. Following L-

BFGS energy minimization, with a distance constraint 

weight of γ=0.8, the geometric distortion of the catalytic 

center of the mutant D344N was significantly reduced. 

Based on this high-confidence model, the Gene Ontology 

(GO) annotation system generated by DeepGOPlus 

(Figure 14) elucidates the multi-level mechanism 

underlying the functional evolution of ADH3.

 

Figure 14. GO biological process analysis of proteins. 
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Molecular dynamics simulation 

Utilizing a 200 ns all-atom molecular dynamics 

simulation, this study conducted a comprehensive 

analysis of the conformational dynamics of the D344N 

mutant as illustrated in Figure 15. The integrated analysis 

of the three diagrams facilitated the development of a 

comprehensive “structure-dynamic-function” correlation 

model.  

The contact diagram elucidated that the enhancement of 

the residue cooperative network serves as the chemical 

foundation for conformational stability. The direction 

diagram demonstrated that optimizing the rigid-

flexibility balance of the secondary structure mitigates 

entropy penalty. Meanwhile, the distance diagram 

quantified the precise nanoscale regulation of the 

substrate channel.

 

Figure 15. Protein molecular dynamics simulation Orientation Map. 

Conclusion 

In summary, this study successfully elucidates the 

catalytic gatekeeping mechanism of ADH3 

amidohydrolase for OTA detoxification through an 

integrated multiscale computational strategy. By 

combining bioinformatics analysis, deep learning-based 

structure prediction, molecular docking, and molecular 

dynamics simulations, we have deciphered the critical 

role of the Zn2+ coordination network and the key residue 

Asp344 in substrate binding and catalytic hydrolysis. 

The findings demonstrate that the enzyme’s efficiency 

stems from a sophisticated interplay of geometric 

complementarity, electrostatic steering, and dynamic 

conformational changes within the active site. The 

systematic mutagenesis and structural refinement further 

provide a robust framework for the rational design of 

high-performance enzymatic detoxification agents, 

highlighting the transformative potential of 

computational biology in advancing biocatalytic 

solutions for food safety and environmental health. 

Future work will focus on the experimental validation of 

the designed mutants and the expansion of this strategy 

to other mycotoxin degradation systems. 
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