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Abstract

Traditional research on black hole formulas relies on complex tensor calculations and quantum field theory. In this
paper, we derive the core black hole formulas (including key expressions such as photon sphere radius, most stable
circular orbit radius, and Schwarzschild radius) using only university-level physics and advanced mathematics, without
the need for complex tensors or quantum field theory. Additionally, we optimize the ring singularity radius formula of
Kerr black holes by incorporating the o’ order correction from string theory. This work not only lowers the learning

barrier for black hole theory but also improves the description of the core structure of Kerr black holes, facilitating the

popularization of related research.
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Introduction

This paper derives a series of black hole-related formulas
(including photon sphere radius, most stable circular
orbit radius, black hole lifetime, black hole temperature,
and Schwarzschild radius) using methods from
university physics and advanced mathematics.
Meanwhile, the formula for the ring singularity radius of
a Kerr black hole is corrected based on string theory and
previous research results [1]. The innovations lie in
proposing a new simple derivation method using
accessible university-level physics and advanced
mathematics, making black hole theory understandable
to more people, and correcting the ring singularity radius
formula. For the first time, all derivations in this paper
rely solely on the basic tools of university physics and
advanced mathematics. It dispenses with the complex
knowledge of tensor analysis and quantum field theory
that is required in traditional papers on this topic. This
streamlined approach significantly lowers the threshold

for understanding and learning black hole theory [2].
Derivation of photon sphere radius

Let the photon sphere radius of a black hole be r. When
only considering the time coordinate (since the photon
has no radial motion, neither escaping nor falling into the

black hole), the photon moves in the equatorial plane of
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the black hole, so 8 =mn/2 and dO =0 . The
Schwarzschild metric of the gravitational field equation
can be written as:

ds? = —(1—Ry/R)c?dt? + R*dp? = 0 (1)
Let R = y, then the equation becomes:
ds? = —(1 = Ry /y)c?dt?* + y*de® = 0 2)

Let the angular velocity of the black holebe w = d¢/dt,
then:

(1 = Ry /y)c?dt? = y*w?dt? 3)

Rearranging terms and eliminating dt from both sides of
the equation, we obtain the function of y:

F() = 0 = 2/y*(1 = Ry/y) = 0 @)

A Schwarzschild black hole does not rotate, so w=0.

Taking the derivative:

F'(y) = 2¢*/y* = 3c*Ry [y = 0 )

Solving the equation gives y = 3/2R,.

Thus, we derive the photon sphere radius of the black
hole. Photons within the photon sphere radius of the
black hole cannot escape the black hole and can only
orbit it. When entering the range of the Schwarzschild
radius, they will fall into the event horizon.

Derivation of the most stable circular orbit radius of
a black hole

When a particle orbits a black hole, its effective potential
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consists of two parts: Centrifugal potential and
gravitational potential (Newtonian mechanics), where
the centrifugal potential needs to be corrected by
relativity. The effective potential satisfies the following
expression:

Veff = L?/2r*(1 —Ry/r) — GM/r (6)
r is the distance between the particle and the center of
the black hole. Taking the first derivative of the effective

potential with respect to 7:

dVeff/dr = —L?/r® 4+ L?Ry/2r* + GM /r? (7)
When dVeff/dr = 0:

L?/2r3(=2 43R, /r) + GM/1* = 0 (8)
—L?/r® 4+ 3L*Ry/2r* + GM /r* = 0 9
Simplifying gives:

—2L%r + 3L*R; 4+ 2GMr* = 0 (10)
Substituting the Schwarzschild radius formula:

L*(3R; —2r) + c?Ryr2 =0 (11)

Taking the second derivative of Formula (10) and
simplifying:

¢?Ryr? = 3L%(r — 2Ry) (12)
Substituting Formula (12) into Formula (11), we can
derive Formula (13):
L*(r-3R,) =0
Solving gives r = 3R,.

(13)

Thus, we derive the circular orbit radius of the black hole,
which is three times the Schwarzschild radius.

At 3R, (the most stable circular orbit), when the
particle’s velocity equals the critical velocity of the orbit,
the revolution is most stable. If the velocity is greater
than the critical velocity of the orbit (but less than the
black hole’s escape velocity), the orbit will deviate but
not escape; if the velocity is less than the critical velocity,

the particle will gradually fall into the black hole.
For r > 3R,: Stable circular orbits exist, and stability

gradually increases as 7 increases (3R, is the “most
stable” critical point; the farther from the black hole, the
less the orbit is affected by gravitational perturbations).
When the particle’s velocity equals the “critical orbital
velocity” of the corresponding orbit, it can maintain a
stable circular orbit. If less than this velocity, it falls into
the black hole. If slightly greater than the critical velocity,
the orbit becomes elliptical (still stable). If the velocity
does not reach the black hole’s escape velocity (ve =
\/W at r), it will not break away from the
gravitational range; if the velocity reaches or exceeds ve,
it will gradually move away from the black hole until
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escaping.

For R; <r <3R; (R4 is the Schwarzschild radius):
Only unstable circular orbits exist (no possibility of
stable revolution), and the instability increases as it
approaches Rg. Even if the particle reaches the critical
orbital velocity in this region, it can only maintain a
circular orbit briefly. A slight perturbation (e.g.,
gravitational waves or the influence of other particles)
induces orbital collapse. If the orbital velocity is
marginally below the critical value, the object spirals
gradually into the black hole. If the velocity is marginally
above the critical value, the orbit deviates rapidly, with
the object either falling into the black hole or evolving
toward the stable orbit at 3R; via radial motion. At this
time, the extreme structure of the effective potential is an

“unstable extremum” [3].

Black hole temperature

When a particle falls into the event horizon, the surface

area of the black hole’s event horizon increases, as can

be seen from the following formulas:
_2GM

gl — Cz (14)
2G6(M + Am)
o = 2 Am) (15)
16mG*M?
Ay = ARGy = —— (16)
16nG?*(M? + Am? + 2MAm)
Ay = 4mR;, = = (17)
16mG?(Am? + 2MA
dA = a2 — a1 = 27T m) (18)
c
4 32nG3M3
= = 1
" 3mR3, 3¢ (19)
4 32nG3 (M3 + Am3 + 3M?Am + 3MAm?
Vy=—s= ( = ) (20)
37RZ, 3¢
32nG3(Am3 + 3M?Am + 3MAm?
y = 32mG%( ) (21)

3¢t
When limAdm - 0, dV/dA = 0. This result reflects the
unique geometric property of black hole horizons, where
the volumetric change is negligible compared to the area
increment. This property constitutes a key premise for
linking horizon dynamics to black hole thermodynamics.
Therefore, compared with the change in the surface area
of the black hole’s horizon, the change in the black hole’s
volume after the particle falls into it can be neglected.
This result aligns with the fundamental connection
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between black hole entropy and horizon geometry [4,5].
We know the Bekenstein-Hawking entropy formula:

S = Ak ¢3/(4hG) (22)
Taking the derivative of S, we get: dS o« dA, so
dv/dS = 0.

According to the first law of black hole thermodynamics:
dE =TdS + PdV . Since the change in black hole
volume is negligible, we have dE = TdS.

3
d(16nahw2k—fli——j
c* X 4hG 8nGMk
dE = i M =——=-daM  (23)
Thus, we derive the black hole temperature formula:
dE c?dMm hcl
T‘EE‘&thdM_ammm) @4
cXh

Derivation of Schwarzschild radius formula

The Schwarzschild radius is a fundamental geometric
property of static, spherically symmetric black holes,
defining the boundary (event horizon) beyond which
gravitational pull becomes irreversible. To derive this
key quantity, we start with the foundational framework
of four-dimensional spacetime geometry, consistent with
the spacetime properties of static black holes explored in
recent theoretical investigations [6,7].

Let the four-dimensional spacetime distance be ds, and
the spacetime coordinates be (t, 8, r, ¢). According to
the Pythagorean theorem:

ds? = dx* + dy* + dz* + dw?

In

(25)
y =
rsinfcose, z=rsing, w=ct (taking ¢ =1 for

spherical coordinates: x = rcosfcose
simplicity).

For null geodesics (light travels along paths determined
by spacetime curvature, with spacetime interval ds = 0),
the time metric and spatial metric have opposite signs.

Substituting gives:

ds* = r*sin*0d¢* + r*d6? (26)
According to Einstein’s theory of relativity:

As? = Ax? — c?At? 27)
From Formulas (26) and Formula (27):

ds® = —dt* + dr® + r’sin®0d¢* + r*d6* (28)

Substituting the time dilation and length contraction
effects, we can get Formula (29):
ds? = —d¢? 1-—v? + dr?
R
CZ
When the photon moves in the equatorial plane, 6 =
/2, df = 0. Due to the physical laws of Schwarzschild

spacetime,

(29)

+1r2sin?0dp? + r2d6?

the structure is invariant under rotation
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around the z-axis, so ¢ 1is constant and dp =0.

According to R = ZGM Jv?, substituting gives:
. 1-26M
) +dr /( )

When ds = 0, then Rg = ZGM/C .

ds? = —dt 2( (30)

Note: 8 is the polar angle (angle with the positive z-
axis), and ¢ is the azimuthal angle (angle with the

positive x-axis).
Gravitational time dilation

Taking the time coordinate part of the Schwarzschild

metric from Formula (30):

ds* = —dt*(1 — 2GM /c*R) (31)
Taking the square root:
ds = —d |(1 ZGM> 32
Integrating gives:

t
t'= (33)

J(@ —2GM/c?R)

Substituting the Schwarzschild radius formula R, =
2GM /c?:

t=t/ /(1 —Ry/R)

t' is the time around an object at distance R from the

(34)

event horizon, and t is the time infinitely far from the
black hole. Near objects with strong gravity such as black
holes, time passes slower - this effect is called

gravitational time dilation.

Gravitational redshift

Substituting the light wave period into the gravitational

time dilation expression:

T =T/ |(1-R,/R)

T’ is the light wave period observed by the observer, and

(35)

T is the actual light wave period. Accordingto v = 1/T,

we can get:

vV =v f(l—Rg/R)

Thus, we obtain the expression for the gravitational

(36)

redshift effect near a black hole, where v’ is the light
frequency received by the observer, and v is the actual
light frequency. It is very similar to the length contraction
formula, except that length is replaced by frequency.

Light waves emitted near a black hole have a lower
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frequency when received by an observer far away - this

is the gravitational redshift effect of black holes.
Black hole lifetime

The lifetime of a black hole is governed by Hawking
radiation - a quantum phenomenon that drives mass loss
through the emission of thermal radiation from the event
This
antiparticle pairs are separated by the black hole’s

horizon. process, wherein virtual particle-
gravitational field (with one particle escaping as
radiation and the other accreting into the black hole),
dictates the time scale over which a black hole evaporates
completely. The derivation of the black hole lifetime
hinges on quantifying the radiative energy loss rate
(luminosity) and integrating the mass evolution over time,
a framework that aligns with both holographic
descriptions of evaporating black holes and models of
primordial black hole decay [8].

According to the luminosity formula (luminosity

represents the total energy of photons radiated per unit

time):

L = 4nR?*oTff* (37)
Stefan-Boltzmann constant:

o = m?kB*/(60h3c?) (38)
Schwarzschild radius:

R =2GM/c? (39)
Black hole temperature:

Tff = hc®/(8nkBGM) (40)

Combining the above four formulas, the total energy of
photons radiated by the black hole per unit time:

L =hc®/(15360nG*M?) 41)
Let E be the total energy of the black hole, then we get:

L =—dE/dt (42)
According to the mass-energy equation:
dE = —c*dM (43)
Combining Formula (41), Formula (42) and Formula
(43):
dM
rrin —hc*/(15360nG*M?) (44)
Simplifying gives:
M?dM = —hc*/(153607G*)dt (45)
Integrating:

M —hct
J;) MM = (153607G2) [ dt (46)

t
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1 hc*
3M3

= — X
153607G? t (“47)

Finally, the black hole lifetime formula is obtained:

t = 5120nG*M?/(hc*) (48)
Notably, this formula predicts a cubic dependence of
lifetime on initial mass. Massive black holes (e.g., stellar-
mass or supermassive black holes) have lifetimes vastly
exceeding the current age of the universe, whereas
primordial micro black holes could have evaporated
within cosmic timeframes. Such evaporation could
potentially contribute to the dark matter and dark
radiation budgets, as proposed in recent theoretical
models [9].

Kerr black hole radius

In university physics, it is understood that the horizontal
offset, vertical offset, and total offset caused by black
hole rotation satisfy the vector relationship, and the total
offset can be orthogonally decomposed into vertical
offset and horizontal offset.

The horizontal offset caused by black hole rotation is the
black hole rotation parameter a: a = J/Mc (angular
momentum per unit mass).

The vertical offset caused by mass curvature is the offset
of r (inner or outer horizon radius) with respect to M.
Note: M is actually GM/c?, a characteristic length of
spacetime curvature caused by mass, which can be
derived from Newtonian mechanics. Taking G and ¢
as 1, the total offsetis M.

mc?/r = GMm/r? (m is the photon mass, r is the
radius between the photon and the black hole center).
According to the above orthogonal decomposition
relationship of wvectors, the following expression is
obtained:

(r—M)*+ a* = M? (49)
Solving gives Formula (50) (inner horizon radius) and

Formula (51) (outer horizon radius):

r_=M—+M?—q? (50)
. =M+ M? —a? (51)
Unruh effect
g =" 52
~ 16m%GM (52)
From AE = kBT, the black hole temperature is obtained:
r=—tc 53
"~ 16m%kBGM (53)
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From the black hole temperature and the zeroth law, we

can get Formula (54):

C4-

k=1om

The gravitational acceleration at the black hole surface

(54)

can be equivalent to the acceleration of a moving object
in the Unruh effect: a = k = (c*/(4GM)). Substituting
gives the Unruh effect: kBT = (ha/(4m%c)).

Where AE approximately represents the average energy
of a single particle radiated by Hawking radiation of the
black hole, k is the surface gravity of the black hole (i.e.,
gravitational acceleration at the black hole surface), kB
is the Boltzmann constant, and M is the mass of the
black hole.

The Unruh effect states that in a vacuum, an accelerating
observer can receive blackbody radiation that an inertial
observer cannot. In other words, when an accelerating
object moves in a vacuum, the temperature around it will
rise, and the temperature around it is related to its
acceleration - the greater the acceleration, the higher the
temperature around it. This temperature originates from
blackbody radiation that cannot be received by inertial
observers. An object like a black hole can be
approximately regarded as a blackbody, and the
temperature near such a strong gravitational field of a
black hole will also rise. This is what Hawking thought
of from this effect, which is similar to the fact that the
time around an accelerating person will slow down (time
dilation effect) and the time near a strong gravitational
field will also slow down (gravitational time dilation
effect); acceleration can be analogous to a gravitational
field. The temperature around an accelerating observer in
the Unruh effect and the energy of the blackbody
radiation AE received by him satisfy the following
relationship: AE = kBT .
radiation with the Unruh effect indicates that Hawking

Understanding Hawking

radiation may not originate from quantum fluctuations,
but the strong gravitational field of the black hole creates
particles (not necessarily visible) - this is the blackbody
radiation generated under a strong gravitational field.
Real particles escape the black hole. According to the
first law of black hole mechanics, the mass-energy of the
black hole is conserved, so antiparticles will fall into the
event horizon. Due to energy conservation, the total
energy of the vacuum before creation is 0, and the total
energy after creating the particle pair is still 0. The energy
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of real particles is positive, so the instantaneous energy
of antiparticles is negative (the energy of antiparticles is
still positive under normal conditions, but their electric
charge is opposite to that of real particles). Thus, after
antiparticles fall into the event horizon, the mass of the
black hole decreases, and from the perspective of an
external observer, the black hole is radiating particles
outward.

After the virtual antiparticle is separated from the virtual
real particle, the instantaneous mass of the virtual
antiparticle is negative. Interpretation: Egpntiparticie
Ereaqr = 0.

According to relativity, we can derive:

Eantiparticle == ’(pzcz + m(2)64) (55)

Erear = (pzcz + m02C4) (56)

Four laws of black hole thermodynamics

Black hole thermodynamics establishes a profound
correspondence between the geometric properties of
black holes (e.g., horizon area, surface gravity) and
classical thermodynamics (entropy, temperature, energy),
a framework that bridges general relativity, quantum
mechanics, and statistical physics. Below, we derive the
four core laws using foundational physics principles,
with connections to recent advances in gravitational
physics and quantum field theory [10,11].

(1) The zeroth law of black hole thermodynamics can be
derived from Newtonian mechanics. Let the surface
gravity of the black hole be k, then k = GM /R?.
Substituting the Schwarzschild radius gives:

k = c*/(4GM) (57)
Notably, this result confirms that surface gravity is
independent of angular coordinates (8,¢) for stationary
black holes, meaning k is uniform across the event
horizon - analogous to uniform temperature in thermal
equilibrium. This uniformity is a key prerequisite for
defining black hole temperature, as emphasized in
studies of higher-derivative corrections to Kerr geometry,
which extend this principle to rotating black holes [12].
It can be seen that for a stationary black hole, the surface
gravity is the same everywhere.

(2) The first law of black hole thermodynamics can be
obtained from the first law of thermodynamics.
According to the first law of thermodynamics:

The first law of black hole thermodynamics describes the
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conservation of mass-energy, linking changes in black
hole mass (dM) to changes in horizon area (dA), electric
work, and rotational work. It is derived by extending the
classical first law of thermodynamics (dE = TdS + dW)
to black hole physics, integrating the Bekenstein-
Hawking entropy formula, black hole temperature, and
relativistic mass-energy relations [13,14].

Starting with the classical first law of thermodynamics:

dE =TdS + dw (58)
According to the Bekenstein-Hawking entropy formula:
3
c
= X —
§ = Ak X = (59)
We know the black hole temperature formula:
T = hc®/(8TkGM) (60)

According to the mass-energy equation: dE = dMc?.
The surface area of the black hole’s event horizon:

A = 4mR? (61)
Substituting the Schwarzschild radius into Formula (59)

and taking the derivative of S with respect to M gives

Equation (62).

dS 8mGkM

dM ~ ke (62)
Combining Formulas (57) to (62) gives:

dM =k/(8mr)dA+ W (63)

According to the formulas for work done by electric

force and work done by external forces on a rotating

object:

AWy = @dq (64)
dw, =J0 (65)
dw = dw; + dw, (66)

Combining Formulas (63) to (66) gives the first law of
black hole thermodynamics (where 2 is the angular
velocity of the black hole):

dM = k/(8m)dA + @dq + 2d] (67)
(3) The second law of black hole thermodynamics can be
derived from the second law of thermodynamics (entropy
increase law): dS = 0.

According to the Formula (59), we get dA < dS, so
dA = 0.

(4) The third law of thermodynamics prohibits a system
from reaching absolute zero temperature (T = 0) in a
finite number of steps. For black holes, this translates to
the statement that surface gravity k cannot be reduced
to zero.

From the third law of thermodynamics, T # 0 (absolute
zero is unattainable). Substituting Formula (57) into the
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Formula (60) shows that T is proportional to k (T <
k). Thus, T # 0 implies k # 0 - surface gravity
cannot be eliminated, even in the limit of extremal black
holes (where M? =a?+ Q%, with a and Q being
rotation and charge parameters).

This conclusion is supported by generalizations of black
hole entropy models, which demonstrate that quantum
fluctuations inhibit the vanishing of surface gravity. It is
also corroborated by studies of non-stationary black hole
fields, that
equilibrium never corresponds to T = 0.

temperature which confirm thermal

Methods for calculating black hole electric potential
and charge

The electric potential and charge are defining properties
of charged black holes (e.g., Kerr-Newman black holes),
with
surrounding matter and radiation. These quantities are

governing their electromagnetic interactions
not only fundamental to describing the spacetime
structure of charged black holes but also critical for
their

dynamic behavior - topics that have been the focus of

understanding thermodynamic stability and
recent advances in gravitational physics. Below, we
derive expressions for the electric potential at and outside
the black hole horizons, and establish the key constraint
on black hole charge, with connections to cutting-edge
studies of charged black hole dynamics and modified
gravity frameworks [15].

(1) Electric potential of black holes

The electric potential of a black hole is derived by
extending classical electromagnetism to the curved
which

incorporate mass (M), rotation (a), and electric charge

spacetime of Kerr-Newman black holes,

(Q). This approach aligns with the electromagnetic
structure of charged rotating black holes, as validated by
studies of charged Hayward black holes and other
charged black hole candidates [16,17].

Electric potential expression at the inner horizon of a
Kerr black hole: ¢, = Q/(4meyr).

Electric potential expression at the outer horizon of a
Kerr black hole: ¢, = Q/(4meyry).
These the
electromagnetic forces and spacetime curvature, a key

expressions reflect balance between

insight supported by analyses of thermodynamic stability
in charged black holes. Notably, the potential scales
inversely with horizon radius, consistent with the idea
that the horizon acts

as a boundary where



Scientific Research Bulletin

2025,2(5):35-43

electromagnetic fields are gravitationally redshifted.
Method for calculating the electric potential outside the
horizon of a Kerr black hole. According to the definition
of electric potential:

¢ = L:E -dl (68)

According to the spacetime correction of a Kerr-
Newman black hole, the radial physical displacement:

dr
dl = (69)

1 — (2Mr — Qe* + a®cos0)
(r* — 2Mr + a* + Qe?)

At the equatorial plane, 6 = m/2, so:

dr
dl = (70)

[1_ 2Mr — Qe?
r2 —2Mr + a? + Qe?

According to the electric field force formula:

Er = Qe/(4me0r?) (71)
Substituting Formula (71) into Formulas (68) gives:
Q= T&dr X ! (72)
w dmeyr? \/[1 ~ 2Mr — Qe?
r2 —2Mr + a? + Qe?
Define:
A=12—=2Mr+a?+ Qe? (73)

Substituting Formula (73) into Formula (72) gives:

<"—4neof;drx[rz Cr)er)

Integrating gives:
¢ = Qe/(4mey) X (rur_)/(ry — 1) (75)
(2) Constraint condition for black hole charge

(74)

The charge of a black hole satisfies a constraint condition:

Qe? < M?—qa? (76)
According to the condition for real roots in mathematics
(r exists), 4 >0, so the above Inequality (76) is
obtained.

This conclusion can be derived through the vector
orthogonal decomposition relationship mentioned in the
part “Kerr black hole radius”. Revising the orthogonal
decomposition mentioned in this part, changing the
orthogonal decomposition to that in three-dimensional
space:

(r—M)? +a? + Qe? = M? (77)
Black hole rotation

According to the conclusion of relativity, the moment of
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inertia of a Kerr black hole:
[ =2Mr? (78)
(r represents the inner or outer horizon radius)

According to the definition of the black hole rotation

parameter:

a=J/M (79)
According to the angular momentum formula:

J=10 (80)
Combining the above three formulas gives:

N =a/(2Mr) (81)

Correction of ring singularity radius via string
theory

The ring singularity is a defining geometric feature of
rotating Kerr black holes, manifesting as a one-
dimensional structure confined to the equatorial plane of
the black hole spacetime. Its spatial configuration is
governed by the core geometric function of Kerr
spacetime:

p? =712+ a%cos?6 (82)
where p represents the core function variable of a Kerr
black hole, which is orthogonally decomposed into radial
and angular components. The angular component
represents the angular vector caused by spacetime
curvature due to black hole rotation, with a magnitude of
acoso.

The singularity satisfies p? =0 and r = 0, solving
gives 6 =m/2 (equatorial plane), and the ring
singularity radius: a = J/(Mc)

However, classical general relativity fails to account for
quantum gravitational effects at the singularity scale,
where spacetime curvature becomes extreme. To address
this limitation, we incorporate the a -order correction
from string theory - an essential modification that
encodes quantum gravitational effects through the string
length squared parameter a [18]. This correction
refines the core geometric function, leading to the revised
expression:

p*(a’) =%+ a%cos?0 + a'f(r,0,a) (83)
Under the slow rotation approximation, the correction
function (k = 1/(4m) is a universal constant in string
theory) is simplified to:

f(r,0,a) = —k X a’cos?6 (84)
The final revised geometric function:
p?(a’) =1%+ a’cos?6(1 —ka') (85)
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Derivation of the ring singularity radius after string
theory correction

Revised singularity condition: p*(a”) =0 and r = 0.
Substituting gives: a*cos*0(1 —ka’) =0

Solving gives the singularity position still at 6 = /2
(equatorial plane). Comparing Formula (82) and Formula
(85), the final derived ring singularity radius after string
theory correction: r = a X m

Substituting a =J/(Mc) and k = 1/(4m) (universal
constant in string theory), the final formula is as follows:
r= (/M) x /(1 - a’/(4m)) (86)
a’ represents the square of the string length, which is the
minimum length of elementary particles in theory.

Conclusion

This is the first time that a full derivation of black hole
formulas has been completed using basic mathematical
and physical tools. The results are consistent with
classical theories, significantly reducing the learning and
research threshold for black hole physics and supporting
interdisciplinary communication. The revised ring
singularity radius formula incorporates the ' order
correction from string theory, addressing the limitations
of traditional formulas. It aligns with the integration
direction of quantum gravity and black hole physics,
enhancing the precision of describing the core structure
of Kerr black holes. The derivation framework can be
extended to higher-dimensional black holes, or the
revised formula can be verified using gravitational wave

observation data.
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