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Abstract 

Traditional research on black hole formulas relies on complex tensor calculations and quantum field theory. In this 

paper, we derive the core black hole formulas (including key expressions such as photon sphere radius, most stable 

circular orbit radius, and Schwarzschild radius) using only university-level physics and advanced mathematics, without 

the need for complex tensors or quantum field theory. Additionally, we optimize the ring singularity radius formula of 

Kerr black holes by incorporating the α’ order correction from string theory. This work not only lowers the learning 

barrier for black hole theory but also improves the description of the core structure of Kerr black holes, facilitating the 

popularization of related research. 

Keywords 

Photon sphere, Hawking radiation, Most stable circular orbit, Four laws of black hole thermodynamics, Gravitational 

time dilation, Gravitational redshift, Unruh effect, Schwarzschild radius, Kerr black hole 

 

Introduction 

This paper derives a series of black hole-related formulas 

(including photon sphere radius, most stable circular 

orbit radius, black hole lifetime, black hole temperature, 

and Schwarzschild radius) using methods from 

university physics and advanced mathematics. 

Meanwhile, the formula for the ring singularity radius of 

a Kerr black hole is corrected based on string theory and 

previous research results [1]. The innovations lie in 

proposing a new simple derivation method using 

accessible university-level physics and advanced 

mathematics, making black hole theory understandable 

to more people, and correcting the ring singularity radius 

formula. For the first time, all derivations in this paper 

rely solely on the basic tools of university physics and 

advanced mathematics. It dispenses with the complex 

knowledge of tensor analysis and quantum field theory 

that is required in traditional papers on this topic. This 

streamlined approach significantly lowers the threshold 

for understanding and learning black hole theory [2]. 

Derivation of photon sphere radius 

Let the photon sphere radius of a black hole be r. When 

only considering the time coordinate (since the photon 

has no radial motion, neither escaping nor falling into the 

black hole), the photon moves in the equatorial plane of 

the black hole, so 𝜃 = 𝜋/2  and 𝑑𝜃 = 0 . The 

Schwarzschild metric of the gravitational field equation 

can be written as: 

𝑑𝑠2 = −(1 − 𝑅𝑔/𝑅)𝑐2𝑑𝑡2 + 𝑅2𝑑𝜑2 = 0                   (1) 

Let 𝑅 = 𝑦, then the equation becomes: 

𝑑𝑠² = −(1 − 𝑅𝑔/𝑦)𝑐²𝑑𝑡² + 𝑦²𝑑𝜑² = 0                      (2) 

Let the angular velocity of the black hole be 𝜔 = 𝑑𝜑/𝑑𝑡, 

then: 

(1 − 𝑅𝑔/𝑦)𝑐²𝑑𝑡² = 𝑦²𝜔²𝑑𝑡²                                          (3) 

Rearranging terms and eliminating dt from both sides of 

the equation, we obtain the function of 𝑦: 

𝐹(𝑦) = 𝜔² − 𝑐²/𝑦²(1 − 𝑅𝑔/𝑦) = 0                              (4) 

A Schwarzschild black hole does not rotate, so ω=0. 

Taking the derivative: 

𝐹’(𝑦) = 2𝑐²/𝑦³ − 3𝑐²𝑅𝑔/𝑦⁴ = 0                                   (5) 

Solving the equation gives 𝑦 = 3/2𝑅𝑔. 

Thus, we derive the photon sphere radius of the black 

hole. Photons within the photon sphere radius of the 

black hole cannot escape the black hole and can only 

orbit it. When entering the range of the Schwarzschild 

radius, they will fall into the event horizon. 

Derivation of the most stable circular orbit radius of 

a black hole 

When a particle orbits a black hole, its effective potential 
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consists of two parts: Centrifugal potential and 

gravitational potential (Newtonian mechanics), where 

the centrifugal potential needs to be corrected by 

relativity. The effective potential satisfies the following 

expression: 

𝑉𝑒𝑓𝑓 = 𝐿²/2𝑟²(1 − 𝑅𝑔/𝑟) − 𝐺𝑀/𝑟                             (6) 

𝑟 is the distance between the particle and the center of 

the black hole. Taking the first derivative of the effective 

potential with respect to 𝑟: 

𝑑𝑉𝑒𝑓𝑓/𝑑𝑟 = −𝐿²/𝑟³ + 𝐿²𝑅𝑔/2𝑟⁴ + 𝐺𝑀/𝑟²              (7) 

When 𝑑𝑉𝑒𝑓𝑓/𝑑𝑟 = 0: 

𝐿²/2𝑟³(−2 + 3𝑅𝑔/𝑟) + 𝐺𝑀/𝑟² = 0                             (8) 

−𝐿²/𝑟³ + 3𝐿²𝑅𝑔/2𝑟⁴ + 𝐺𝑀/𝑟² = 0                             (9) 

Simplifying gives: 

−2𝐿²𝑟 + 3𝐿²𝑅𝑔 + 2𝐺𝑀𝑟² = 0                                     (10) 

Substituting the Schwarzschild radius formula: 

𝐿2(3𝑅𝑔 − 2𝑟) + 𝑐2𝑅𝑔𝑟2 = 0                                        (11) 

Taking the second derivative of Formula (10) and 

simplifying: 

𝑐2𝑅𝑔𝑟2 = 3𝐿2(𝑟 − 2𝑅𝑔)                                                (12) 

Substituting Formula (12) into Formula (11), we can 

derive Formula (13): 

𝐿2(𝑟 − 3𝑅𝑔) = 0                                                             (13) 

Solving gives 𝑟 = 3𝑅𝑔. 

Thus, we derive the circular orbit radius of the black hole, 

which is three times the Schwarzschild radius. 

At 3𝑅𝑔  (the most stable circular orbit), when the 

particle’s velocity equals the critical velocity of the orbit, 

the revolution is most stable. If the velocity is greater 

than the critical velocity of the orbit (but less than the 

black hole’s escape velocity), the orbit will deviate but 

not escape; if the velocity is less than the critical velocity, 

the particle will gradually fall into the black hole. 

For 𝑟 > 3𝑅𝑔 : Stable circular orbits exist, and stability 

gradually increases as 𝑟  increases (3𝑅𝑔  is the “most 

stable” critical point; the farther from the black hole, the 

less the orbit is affected by gravitational perturbations). 

When the particle’s velocity equals the “critical orbital 

velocity” of the corresponding orbit, it can maintain a 

stable circular orbit. If less than this velocity, it falls into 

the black hole. If slightly greater than the critical velocity, 

the orbit becomes elliptical (still stable). If the velocity 

does not reach the black hole’s escape velocity (𝑣𝑒 =

√(2𝐺𝑀/𝑟)  at 𝑟 ), it will not break away from the 

gravitational range; if the velocity reaches or exceeds ve, 

it will gradually move away from the black hole until 

escaping. 

For 𝑅𝑔 < 𝑟 < 3𝑅𝑔  (𝑅𝑔  is the Schwarzschild radius): 

Only unstable circular orbits exist (no possibility of 

stable revolution), and the instability increases as it 

approaches 𝑅𝑔. Even if the particle reaches the critical 

orbital velocity in this region, it can only maintain a 

circular orbit briefly. A slight perturbation (e.g., 

gravitational waves or the influence of other particles) 

induces orbital collapse. If the orbital velocity is 

marginally below the critical value, the object spirals 

gradually into the black hole. If the velocity is marginally 

above the critical value, the orbit deviates rapidly, with 

the object either falling into the black hole or evolving 

toward the stable orbit at 3𝑅𝑔 via radial motion. At this 

time, the extreme structure of the effective potential is an 

“unstable extremum” [3]. 

Black hole temperature 

When a particle falls into the event horizon, the surface 

area of the black hole’s event horizon increases, as can 

be seen from the following formulas: 

𝑅𝑔1 =
2𝐺𝑀

𝑐2                                                                                       (14) 

𝑅𝑔2 =
2𝐺(𝑀 + 𝛥𝑚)

𝑐2
                                                                      (15) 

𝐴1 = 4𝜋𝑅𝑔1
2 =

16𝜋𝐺2𝑀2

𝑐4                                                             (16) 

𝐴2 = 4𝜋𝑅𝑔2
2 =

16𝜋𝐺2(𝑀2 + 𝛥𝑚2 + 2𝑀𝛥𝑚)

𝑐4                         (17) 

𝑑𝐴 = 𝐴2 − 𝐴1 =
16𝜋𝐺2(𝛥𝑚2 + 2𝑀𝛥𝑚)

𝑐4
                               (18) 

𝑉1 =
4

3𝜋𝑅𝑔1
3 =

32𝜋𝐺3𝑀3

3𝑐6                                                              (19) 

𝑉2 =
4

3𝜋𝑅𝑔2
3 =

32𝜋𝐺3(𝑀3 + 𝛥𝑚3 + 3𝑀2𝛥𝑚 + 3𝑀𝛥𝑚2)

3𝑐6   (20) 

𝑑𝑉 =
32𝜋𝐺3(𝛥𝑚3 + 3𝑀2𝛥𝑚 + 3𝑀𝛥𝑚2)

3𝑐6
                              (21) 

When 𝑙𝑖𝑚𝛥𝑚 → 0, 𝑑𝑉/𝑑𝐴 = 0. This result reflects the 

unique geometric property of black hole horizons, where 

the volumetric change is negligible compared to the area 

increment. This property constitutes a key premise for 

linking horizon dynamics to black hole thermodynamics. 

Therefore, compared with the change in the surface area 

of the black hole’s horizon, the change in the black hole’s 

volume after the particle falls into it can be neglected. 

This result aligns with the fundamental connection 
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between black hole entropy and horizon geometry [4,5]. 

We know the Bekenstein-Hawking entropy formula: 

𝑆 = 𝐴𝑘 𝑐³/(4ℏ𝐺)                                                            (22) 

Taking the derivative of 𝑆 , we get: 𝑑𝑆 ∝ 𝑑𝐴 , so 

𝑑𝑉/𝑑𝑆 = 0. 

According to the first law of black hole thermodynamics: 

𝑑𝐸 = 𝑇𝑑𝑆 + 𝑃𝑑𝑉 . Since the change in black hole 

volume is negligible, we have 𝑑𝐸 = 𝑇𝑑𝑆. 

𝑑𝐸 =
𝑑 (16𝜋𝐺2𝑀2𝑘

𝑐3

𝑐4 × 4ℏ𝐺
)

𝑑𝑀
∙ 𝑑𝑀 =

8𝜋𝐺𝑀𝑘

𝑐 × ℏ
· 𝑑𝑀         (23) 

Thus, we derive the black hole temperature formula: 

𝑇 =
𝑑𝐸

𝑑𝑆
=

𝑐2𝑑𝑀

8𝜋𝐺𝑀𝑘
𝑐 × ℏ

· 𝑑𝑀
=

ℏ𝑐3

(8𝜋𝑘𝐺𝑀)
                                       (24) 

Derivation of Schwarzschild radius formula 

The Schwarzschild radius is a fundamental geometric 

property of static, spherically symmetric black holes, 

defining the boundary (event horizon) beyond which 

gravitational pull becomes irreversible. To derive this 

key quantity, we start with the foundational framework 

of four-dimensional spacetime geometry, consistent with 

the spacetime properties of static black holes explored in 

recent theoretical investigations [6,7]. 

Let the four-dimensional spacetime distance be ds, and 

the spacetime coordinates be (𝑡, 𝜃, 𝑟, 𝜑). According to 

the Pythagorean theorem: 

𝑑𝑠² = 𝑑𝑥² + 𝑑𝑦² + 𝑑𝑧² + 𝑑𝑤²                                    (25) 

In spherical coordinates: 𝑥 = 𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 , 𝑦 =

𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 , 𝑧 = 𝑟𝑠𝑖𝑛𝜑 , 𝑤 = 𝑐𝑡  (taking 𝑐 = 1  for 

simplicity). 

For null geodesics (light travels along paths determined 

by spacetime curvature, with spacetime interval 𝑑𝑠 = 0), 

the time metric and spatial metric have opposite signs. 

Substituting gives: 

𝑑𝑠² = 𝑟²𝑠𝑖𝑛²𝜃𝑑𝜑² + 𝑟²𝑑𝜃²                                          (26) 

According to Einstein’s theory of relativity: 

𝛥𝑠² = 𝛥𝑥² − 𝑐²𝛥𝑡²                                                        (27) 

From Formulas (26) and Formula (27): 

𝑑𝑠² = −𝑑𝑡² + 𝑑𝑟² + 𝑟²𝑠𝑖𝑛²𝜃𝑑𝜑² + 𝑟²𝑑𝜃²               (28) 

Substituting the time dilation and length contraction 

effects, we can get Formula (29): 

𝑑𝑠2 = −𝑑𝑡2 (
1 − 𝑣2

𝑐2
) +

𝑑𝑟2

(1 −
𝑣2

𝑐2 )
+ 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2 + 𝑟2𝑑𝜃2            (29) 

When the photon moves in the equatorial plane, 𝜃 =

𝜋/2, 𝑑𝜃 = 0. Due to the physical laws of Schwarzschild 

spacetime, the structure is invariant under rotation 

around the z-axis, so 𝜑  is constant and 𝑑𝜑 = 0 . 

According to 𝑅 = 2𝐺𝑀/𝑣², substituting gives: 

𝑑𝑠² = −𝑑𝑡²(
1 − 2𝐺𝑀

𝑐²𝑅
) + 𝑑𝑟²/(

1 − 2𝐺𝑀

𝑐²𝑅
)              (30) 

When 𝑑𝑠 = 0, then 𝑅𝑔 = 2𝐺𝑀/𝑐². 

Note: 𝜃  is the polar angle (angle with the positive z-

axis), and 𝜑  is the azimuthal angle (angle with the 

positive x-axis). 

Gravitational time dilation 

Taking the time coordinate part of the Schwarzschild 

metric from Formula (30): 

𝑑𝑠² = −𝑑𝑡²(1 − 2𝐺𝑀/𝑐²𝑅)                                         (31) 

Taking the square root: 

𝑑𝑠 = −𝑑𝑡√(1 −
2𝐺𝑀

𝑐2𝑅
)                                                 (32) 

Integrating gives: 

𝑡’ =
𝑡

√(1 − 2𝐺𝑀/𝑐²𝑅)
                                                  (33) 

Substituting the Schwarzschild radius formula 𝑅𝑔 =

2𝐺𝑀/𝑐²: 

𝑡’ = 𝑡/√(1 − 𝑅𝑔/𝑅)                                                      (34) 

𝑡’ is the time around an object at distance 𝑅 from the 

event horizon, and 𝑡 is the time infinitely far from the 

black hole. Near objects with strong gravity such as black 

holes, time passes slower - this effect is called 

gravitational time dilation. 

Gravitational redshift 

Substituting the light wave period into the gravitational 

time dilation expression: 

𝑇’ = 𝑇/√(1 − 𝑅𝑔/𝑅)                                                    (35) 

𝑇’ is the light wave period observed by the observer, and 

𝑇 is the actual light wave period. According to 𝜈 = 1/𝑇, 

we can get: 

𝜈’ = 𝜈√(1 − 𝑅𝑔/𝑅)                                                       (36) 

Thus, we obtain the expression for the gravitational 

redshift effect near a black hole, where 𝜈’  is the light 

frequency received by the observer, and 𝜈 is the actual 

light frequency. It is very similar to the length contraction 

formula, except that length is replaced by frequency. 

Light waves emitted near a black hole have a lower 
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frequency when received by an observer far away - this 

is the gravitational redshift effect of black holes. 

Black hole lifetime 

The lifetime of a black hole is governed by Hawking 

radiation - a quantum phenomenon that drives mass loss 

through the emission of thermal radiation from the event 

horizon. This process, wherein virtual particle-

antiparticle pairs are separated by the black hole’s 

gravitational field (with one particle escaping as 

radiation and the other accreting into the black hole), 

dictates the time scale over which a black hole evaporates 

completely. The derivation of the black hole lifetime 

hinges on quantifying the radiative energy loss rate 

(luminosity) and integrating the mass evolution over time, 

a framework that aligns with both holographic 

descriptions of evaporating black holes and models of 

primordial black hole decay [8]. 

According to the luminosity formula (luminosity 

represents the total energy of photons radiated per unit 

time): 

𝐿 = 4𝜋𝑅²𝜎𝑇𝑓𝑓⁴                                                               (37) 

Stefan-Boltzmann constant: 

𝜎 = 𝜋²𝑘𝐵⁴/(60ħ³𝑐²)                                                     (38) 

Schwarzschild radius: 

𝑅 = 2𝐺𝑀/𝑐²                                                                     (39) 

Black hole temperature: 

𝑇𝑓𝑓 = ħ𝑐³/(8𝜋𝑘𝐵𝐺𝑀)                                                  (40) 

Combining the above four formulas, the total energy of 

photons radiated by the black hole per unit time: 

𝐿 = ħ𝑐⁶/(15360𝜋𝐺²𝑀²)                                               (41) 

Let 𝐸 be the total energy of the black hole, then we get: 

𝐿 = −𝑑𝐸/𝑑𝑡                                                                     (42) 

According to the mass-energy equation: 

𝑑𝐸 = −𝑐2𝑑𝑀                                                                   (43) 

Combining Formula (41), Formula (42) and Formula 

(43): 

𝑑𝑀

𝑑𝑡
= −ħ𝑐⁴/(15360𝜋𝐺²𝑀²)                                       (44) 

Simplifying gives: 

𝑀²𝑑𝑀 = −ħ𝑐⁴/(15360𝜋𝐺²)𝑑𝑡                                   (45) 

Integrating: 

∫ 𝑀²𝑑𝑀
𝑀

0

=
−ħ𝑐⁴

(15360𝜋𝐺²) ∫ 𝑑𝑡
0

𝑡

                                 (46) 

1

3𝑀³
= −

ħ𝑐4

15360𝜋𝐺2
× 𝑡                                               (47) 

Finally, the black hole lifetime formula is obtained: 

𝑡 = 5120𝜋𝐺²𝑀³/(ħ𝑐⁴)                                                  (48) 

Notably, this formula predicts a cubic dependence of 

lifetime on initial mass. Massive black holes (e.g., stellar-

mass or supermassive black holes) have lifetimes vastly 

exceeding the current age of the universe, whereas 

primordial micro black holes could have evaporated 

within cosmic timeframes. Such evaporation could 

potentially contribute to the dark matter and dark 

radiation budgets, as proposed in recent theoretical 

models [9]. 

Kerr black hole radius 

In university physics, it is understood that the horizontal 

offset, vertical offset, and total offset caused by black 

hole rotation satisfy the vector relationship, and the total 

offset can be orthogonally decomposed into vertical 

offset and horizontal offset. 

The horizontal offset caused by black hole rotation is the 

black hole rotation parameter 𝑎 : 𝑎 = 𝐽/𝑀𝑐  (angular 

momentum per unit mass). 

The vertical offset caused by mass curvature is the offset 

of 𝑟 (inner or outer horizon radius) with respect to 𝑀. 

Note: 𝑀  is actually 𝐺𝑀/𝑐² , a characteristic length of 

spacetime curvature caused by mass, which can be 

derived from Newtonian mechanics. Taking 𝐺  and 𝑐 

as 1, the total offset is 𝑀. 

𝑚𝑐²/𝑟 = 𝐺𝑀𝑚/𝑟²  (𝑚  is the photon mass, 𝑟  is the 

radius between the photon and the black hole center). 

According to the above orthogonal decomposition 

relationship of vectors, the following expression is 

obtained: 

(𝑟 − 𝑀)² + 𝑎² = 𝑀²                                                       (49) 

Solving gives Formula (50) (inner horizon radius) and 

Formula (51) (outer horizon radius): 

𝑟− = 𝑀 − √𝑀2 − 𝑎2                                                       (50) 

𝑟+ = 𝑀 + √𝑀2 − 𝑎2                                                      (51) 

Unruh effect 

𝛥𝐸 =
ℎ𝑐³

16𝜋²𝐺𝑀
                                                                (52) 

From 𝛥𝐸 = 𝑘𝐵𝑇, the black hole temperature is obtained: 

𝑇 =
ℎ𝑐³

16𝜋²𝑘𝐵𝐺𝑀
                                                              (53) 
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From the black hole temperature and the zeroth law, we 

can get Formula (54): 

𝑘 =
𝑐⁴

4𝐺𝑀
                                                                           (54) 

The gravitational acceleration at the black hole surface 

can be equivalent to the acceleration of a moving object 

in the Unruh effect: 𝑎 = 𝑘 = (𝑐⁴/(4𝐺𝑀)). Substituting 

gives the Unruh effect: 𝑘𝐵𝑇 = (ℎ𝑎/(4𝜋²𝑐)). 

Where 𝛥𝐸 approximately represents the average energy 

of a single particle radiated by Hawking radiation of the 

black hole, 𝑘 is the surface gravity of the black hole (i.e., 

gravitational acceleration at the black hole surface), 𝑘𝐵 

is the Boltzmann constant, and 𝑀  is the mass of the 

black hole. 

The Unruh effect states that in a vacuum, an accelerating 

observer can receive blackbody radiation that an inertial 

observer cannot. In other words, when an accelerating 

object moves in a vacuum, the temperature around it will 

rise, and the temperature around it is related to its 

acceleration - the greater the acceleration, the higher the 

temperature around it. This temperature originates from 

blackbody radiation that cannot be received by inertial 

observers. An object like a black hole can be 

approximately regarded as a blackbody, and the 

temperature near such a strong gravitational field of a 

black hole will also rise. This is what Hawking thought 

of from this effect, which is similar to the fact that the 

time around an accelerating person will slow down (time 

dilation effect) and the time near a strong gravitational 

field will also slow down (gravitational time dilation 

effect); acceleration can be analogous to a gravitational 

field. The temperature around an accelerating observer in 

the Unruh effect and the energy of the blackbody 

radiation 𝛥𝐸  received by him satisfy the following 

relationship: 𝛥𝐸 = 𝑘𝐵𝑇 . Understanding Hawking 

radiation with the Unruh effect indicates that Hawking 

radiation may not originate from quantum fluctuations, 

but the strong gravitational field of the black hole creates 

particles (not necessarily visible) - this is the blackbody 

radiation generated under a strong gravitational field. 

Real particles escape the black hole. According to the 

first law of black hole mechanics, the mass-energy of the 

black hole is conserved, so antiparticles will fall into the 

event horizon. Due to energy conservation, the total 

energy of the vacuum before creation is 0, and the total 

energy after creating the particle pair is still 0. The energy 

of real particles is positive, so the instantaneous energy 

of antiparticles is negative (the energy of antiparticles is 

still positive under normal conditions, but their electric 

charge is opposite to that of real particles). Thus, after 

antiparticles fall into the event horizon, the mass of the 

black hole decreases, and from the perspective of an 

external observer, the black hole is radiating particles 

outward. 

After the virtual antiparticle is separated from the virtual 

real particle, the instantaneous mass of the virtual 

antiparticle is negative. Interpretation: 𝐸𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +

𝐸𝑟𝑒𝑎𝑙 = 0. 

According to relativity, we can derive: 

𝐸𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = −√(𝑝2𝑐2 + 𝑚0
2𝑐4)                              (55) 

𝐸𝑟𝑒𝑎𝑙 = √(𝑝²𝑐² + 𝑚0²𝑐⁴)                                             (56) 

Four laws of black hole thermodynamics 

Black hole thermodynamics establishes a profound 

correspondence between the geometric properties of 

black holes (e.g., horizon area, surface gravity) and 

classical thermodynamics (entropy, temperature, energy), 

a framework that bridges general relativity, quantum 

mechanics, and statistical physics. Below, we derive the 

four core laws using foundational physics principles, 

with connections to recent advances in gravitational 

physics and quantum field theory [10,11]. 

(1) The zeroth law of black hole thermodynamics can be 

derived from Newtonian mechanics. Let the surface 

gravity of the black hole be k, then 𝑘 = 𝐺𝑀/𝑅². 

Substituting the Schwarzschild radius gives: 

𝑘 = 𝑐⁴/(4𝐺𝑀)                                                                  (57) 

Notably, this result confirms that surface gravity is 

independent of angular coordinates (𝜃,𝜑) for stationary 

black holes, meaning 𝑘  is uniform across the event 

horizon - analogous to uniform temperature in thermal 

equilibrium. This uniformity is a key prerequisite for 

defining black hole temperature, as emphasized in 

studies of higher-derivative corrections to Kerr geometry, 

which extend this principle to rotating black holes [12]. 

It can be seen that for a stationary black hole, the surface 

gravity is the same everywhere. 

(2) The first law of black hole thermodynamics can be 

obtained from the first law of thermodynamics. 

According to the first law of thermodynamics: 

The first law of black hole thermodynamics describes the 



Scientific Research Bulletin                                                        2025,2(5):35-43 

https://www.wonford.com/                          40 

conservation of mass-energy, linking changes in black 

hole mass (𝑑𝑀) to changes in horizon area (𝑑𝐴), electric 

work, and rotational work. It is derived by extending the 

classical first law of thermodynamics (𝑑𝐸 = 𝑇𝑑𝑆 + 𝑑𝑊) 

to black hole physics, integrating the Bekenstein-

Hawking entropy formula, black hole temperature, and 

relativistic mass-energy relations [13,14]. 

Starting with the classical first law of thermodynamics: 

𝑑𝐸 = 𝑇𝑑𝑆 + 𝑑𝑊                                                             (58) 

According to the Bekenstein-Hawking entropy formula: 

𝑆 = 𝐴𝑘 ×
𝑐³

4ℏ𝐺
                                                                 (59) 

We know the black hole temperature formula: 

𝑇 = ℏ𝑐³/(8𝜋𝑘𝐺𝑀)                                                         (60) 

According to the mass-energy equation: 𝑑𝐸 = 𝑑𝑀𝑐². 

The surface area of the black hole’s event horizon： 

𝐴 = 4𝜋𝑅𝑔²                                                                        (61) 

Substituting the Schwarzschild radius into Formula (59) 

and taking the derivative of 𝑆 with respect to 𝑀 gives 

Equation (62). 

𝑑𝑆

𝑑𝑀
=

8𝜋𝐺𝑘𝑀

ℏc
                                                                  (62) 

Combining Formulas (57) to (62) gives: 

𝑑𝑀 = 𝑘/(8𝜋)𝑑𝐴 + 𝑊                                                   (63) 

According to the formulas for work done by electric 

force and work done by external forces on a rotating 

object: 

𝑑𝑊1 = 𝜑𝑑𝑞                                                                       (64) 

𝑑𝑊2 = 𝐽𝛺                                                                          (65) 

𝑑𝑊 = 𝑑𝑊1 + 𝑑𝑊2                                                          (66) 

Combining Formulas (63) to (66) gives the first law of 

black hole thermodynamics (where 𝛺  is the angular 

velocity of the black hole): 

𝑑𝑀 = 𝑘/(8𝜋)𝑑𝐴 + 𝜑𝑑𝑞 + 𝛺𝑑𝐽                                   (67) 

(3) The second law of black hole thermodynamics can be 

derived from the second law of thermodynamics (entropy 

increase law): 𝑑𝑆 ≥ 0. 

According to the Formula (59), we get 𝑑𝐴 ∝ 𝑑𝑆 , so 

𝑑𝐴 ≥ 0. 

(4) The third law of thermodynamics prohibits a system 

from reaching absolute zero temperature (𝑇 = 0 ) in a 

finite number of steps. For black holes, this translates to 

the statement that surface gravity 𝑘 cannot be reduced 

to zero. 

From the third law of thermodynamics, 𝑇 ≠ 0 (absolute 

zero is unattainable). Substituting Formula (57) into the 

Formula (60) shows that 𝑇  is proportional to 𝑘  (𝑇 ∝

𝑘 ). Thus, 𝑇 ≠ 0  implies 𝑘 ≠ 0  - surface gravity 

cannot be eliminated, even in the limit of extremal black 

holes (where 𝑀2 = 𝑎2 + 𝑄2 , with 𝑎  and 𝑄  being 

rotation and charge parameters). 

This conclusion is supported by generalizations of black 

hole entropy models, which demonstrate that quantum 

fluctuations inhibit the vanishing of surface gravity. It is 

also corroborated by studies of non-stationary black hole 

temperature fields, which confirm that thermal 

equilibrium never corresponds to 𝑇 = 0. 

Methods for calculating black hole electric potential 

and charge 

The electric potential and charge are defining properties 

of charged black holes (e.g., Kerr-Newman black holes), 

governing their electromagnetic interactions with 

surrounding matter and radiation. These quantities are 

not only fundamental to describing the spacetime 

structure of charged black holes but also critical for 

understanding their thermodynamic stability and 

dynamic behavior - topics that have been the focus of 

recent advances in gravitational physics. Below, we 

derive expressions for the electric potential at and outside 

the black hole horizons, and establish the key constraint 

on black hole charge, with connections to cutting-edge 

studies of charged black hole dynamics and modified 

gravity frameworks [15]. 

(1) Electric potential of black holes 

The electric potential of a black hole is derived by 

extending classical electromagnetism to the curved 

spacetime of Kerr-Newman black holes, which 

incorporate mass (M), rotation (a), and electric charge 

(Q). This approach aligns with the electromagnetic 

structure of charged rotating black holes, as validated by 

studies of charged Hayward black holes and other 

charged black hole candidates [16,17]. 

Electric potential expression at the inner horizon of a 

Kerr black hole: 𝜑1 = 𝑄/(4𝜋𝜀0𝑟−). 

Electric potential expression at the outer horizon of a 

Kerr black hole: 𝜑2 = 𝑄/(4𝜋𝜀0𝑟+). 

These expressions reflect the balance between 

electromagnetic forces and spacetime curvature, a key 

insight supported by analyses of thermodynamic stability 

in charged black holes. Notably, the potential scales 

inversely with horizon radius, consistent with the idea 

that the horizon acts as a boundary where 
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electromagnetic fields are gravitationally redshifted. 

Method for calculating the electric potential outside the 

horizon of a Kerr black hole. According to the definition 

of electric potential: 

𝜑 = ∫ 𝐸 · 𝑑𝑙
𝑟

∞

                                                                   (68) 

According to the spacetime correction of a Kerr-

Newman black hole, the radial physical displacement: 

𝑑𝑙 =
𝑑𝑟

√
1 − (2𝑀𝑟 − 𝑄𝑒² + 𝑎²𝑐𝑜𝑠𝜃)

(𝑟² − 2𝑀𝑟 + 𝑎² + 𝑄𝑒²)

                           (69) 

At the equatorial plane, 𝜃 = 𝜋/2, so: 

𝑑𝑙 =
𝑑𝑟

√[1 −
2𝑀𝑟 − 𝑄𝑒2

𝑟2 − 2𝑀𝑟 + 𝑎2 + 𝑄𝑒2]

                          (70) 

According to the electric field force formula: 

𝐸𝑟 = 𝑄𝑒/(4𝜋𝜀0𝑟²)                                                        (71) 

Substituting Formula (71) into Formulas (68) gives: 

𝜑 = ∫
𝑄𝑒

4𝜋𝜀0𝑟²

𝑟

∞

𝑑𝑟 ×
1

√[1 −
2𝑀𝑟 − 𝑄𝑒2

𝑟2 − 2𝑀𝑟 + 𝑎2 + 𝑄𝑒2]

  (72) 

Define: 

𝛥 = 𝑟2 − 2𝑀𝑟 + 𝑎2 + 𝑄𝑒2                                           (73) 

Substituting Formula (73) into Formula (72) gives: 

𝜑 =
𝑄𝑒

4𝜋𝜀0 ∫ 𝑑𝑟
𝑟

∞

×
1

[𝑟2√(𝑟−𝑟+)(𝑟−𝑟−)
𝛥 ]

                       (74) 

Integrating gives: 

𝜑 = 𝑄𝑒/(4𝜋𝜀0) × (𝑟−𝑟−)/(𝑟+ − 𝑟−)                           (75) 

(2) Constraint condition for black hole charge 

The charge of a black hole satisfies a constraint condition: 

𝑄𝑒2 ≤ 𝑀2 − 𝑎2                                                                (76) 

According to the condition for real roots in mathematics 

( 𝑟  exists), 𝛥 ≥ 0 , so the above Inequality (76) is 

obtained. 

This conclusion can be derived through the vector 

orthogonal decomposition relationship mentioned in the 

part “Kerr black hole radius”. Revising the orthogonal 

decomposition mentioned in this part, changing the 

orthogonal decomposition to that in three-dimensional 

space: 

(𝑟 − 𝑀)2 + 𝑎2 + 𝑄𝑒2 = 𝑀2                                         (77) 

Black hole rotation 

According to the conclusion of relativity, the moment of 

inertia of a Kerr black hole: 

𝐼 = 2𝑀𝑟²                                                                           (78) 

(r represents the inner or outer horizon radius) 

According to the definition of the black hole rotation 

parameter: 

𝑎 = 𝐽/𝑀                                                                             (79) 

According to the angular momentum formula: 

𝐽 = 𝐼𝛺                                                                                (80) 

Combining the above three formulas gives: 

𝛺 = 𝑎/(2𝑀𝑟)                                                                   (81) 

Correction of ring singularity radius via string 

theory 

The ring singularity is a defining geometric feature of 

rotating Kerr black holes, manifesting as a one-

dimensional structure confined to the equatorial plane of 

the black hole spacetime. Its spatial configuration is 

governed by the core geometric function of Kerr 

spacetime: 

𝜌2 = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃                                                        (82) 

where 𝜌 represents the core function variable of a Kerr 

black hole, which is orthogonally decomposed into radial 

and angular components. The angular component 

represents the angular vector caused by spacetime 

curvature due to black hole rotation, with a magnitude of 

𝑎𝑐𝑜𝑠𝜃. 

The singularity satisfies 𝜌² = 0  and 𝑟 = 0 , solving 

gives 𝜃 = 𝜋/2  (equatorial plane), and the ring 

singularity radius: 𝑎 = 𝐽/(𝑀𝑐) 

However, classical general relativity fails to account for 

quantum gravitational effects at the singularity scale, 

where spacetime curvature becomes extreme. To address 

this limitation, we incorporate the 𝑎’ -order correction 

from string theory - an essential modification that 

encodes quantum gravitational effects through the string 

length squared parameter 𝑎’  [18]. This correction 

refines the core geometric function, leading to the revised 

expression: 

𝜌2(𝛼 ’) = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃 + 𝛼 ’𝑓(𝑟, 𝜃, 𝑎)                  (83) 

Under the slow rotation approximation, the correction 

function (𝑘 ≈ 1/(4𝜋 ) is a universal constant in string 

theory) is simplified to: 

𝑓(𝑟, 𝜃, 𝑎) = −𝑘 × 𝑎2𝑐𝑜𝑠2𝜃                                          (84) 

The final revised geometric function: 

𝜌2(𝛼’) = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃(1 − 𝑘𝛼 ’)                              (85) 
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Derivation of the ring singularity radius after string 

theory correction 

Revised singularity condition: 𝜌²(𝛼’) = 0  and 𝑟 = 0 . 

Substituting gives: 𝑎²𝑐𝑜𝑠²𝜃(1 − 𝑘𝛼’) = 0 

Solving gives the singularity position still at 𝜃 = 𝜋/2 

(equatorial plane). Comparing Formula (82) and Formula 

(85), the final derived ring singularity radius after string 

theory correction: 𝑟 = 𝑎 × √(1 − 𝑘𝛼’) 

Substituting 𝑎 = 𝐽/(𝑀𝑐) 𝑎𝑛𝑑 𝑘 ≈ 1/(4𝜋)  (universal 

constant in string theory), the final formula is as follows: 

𝑟 = (𝐽/(𝑀𝑐)) × √(1 − 𝛼’/(4𝜋))                               (86) 

𝛼’ represents the square of the string length, which is the 

minimum length of elementary particles in theory. 

Conclusion 

This is the first time that a full derivation of black hole 

formulas has been completed using basic mathematical 

and physical tools. The results are consistent with 

classical theories, significantly reducing the learning and 

research threshold for black hole physics and supporting 

interdisciplinary communication. The revised ring 

singularity radius formula incorporates the 𝛼’  order 

correction from string theory, addressing the limitations 

of traditional formulas. It aligns with the integration 

direction of quantum gravity and black hole physics, 

enhancing the precision of describing the core structure 

of Kerr black holes. The derivation framework can be 

extended to higher-dimensional black holes, or the 

revised formula can be verified using gravitational wave 

observation data. 
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