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Abstract 

Generative artificial intelligence is driving instructional games from static scripts toward intelligent forms that are 

generative, adaptive, and diagnostic. However, mechanistic evidence is still lacking on what kinds of AI-driven 

instructional games effectively promote learning and why. Grounded in a “design features - process mechanisms - 

learning outcomes” framework and targeting deep learning outcomes of understanding and transfer, this study collected 

210 questionnaire responses from teachers and students who used AI instructional games during the past semester. 

Structural equation modeling (SEM) was employed to test pathways by which key design features - clarity of goals and 

rules, adaptive challenge, diagnostic feedback, and autonomy and control - affect learning outcomes via 

flow/immersion and cognitive engagement. Results indicate good scale reliability and validity and satisfactory model 

fit. Path analyses reveal a progressive, interlinked structure among AI instructional game design elements: clarity of 

goals and rules - diagnostic feedback - adaptive challenge - autonomy and control. These elements in turn enhance 

cognitive engagement by increasing flow/immersion, and ultimately significantly promote understanding and transfer. 

Based on these findings, the study offers classroom-oriented design implications: Prioritize transparent goals and rules, 

provide actionable diagnostic feedback, implement ability-matched adaptive support, and preserve learner autonomy 

and control to effectively convert immersive experiences into deep cognitive processing and transfer performance. 
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Introduction 

Generative artificial intelligence is reshaping how 

educational games are developed and applied. 

Leveraging capabilities such as code generation, 

interface automation, and online deployment, instructors 

can design, iterate, and implement educational games in 

the classroom with lower barriers and shorter cycles. 

This drives a transition from “static rules and fixed 

scripts” to a generative, adaptive, and diagnostic 

intelligent paradigm [1]. Compared with traditional 

educational games, AI-driven educational games can 

more flexibly generate tasks and scenarios, dynamically 

adjust difficulty, and provide formative feedback, while 

also producing traceable learning process data. They are 

therefore widely regarded as having the potential to 

promote deep learning. 

However, in terms of learning effectiveness, existing 

research has concentrated largely on how AI 

instructional games are generated and implemented, the 

construction of platforms and workflows, and 

prerequisite factors such as teacher AI literacy [2,3]. Few 

studies address a more central design question: what 

kinds of AI instructional games actually promote student 

learning. This gap leaves teachers without clear guidance 

when designing AI instructional games. AI instructional 

games are typically complex interventions composed of 

“intelligent functionality - gamified interaction - 

instructional sequencing” and their efficacy depends on 

how specific design features alter learners’ key cognitive 

and behavioral processes. Therefore, it is necessary to 

anchor inquiry in learning outcomes and conduct 

mechanistic examinations of AI instructional games 

along the “design features - process mechanisms” 

pathway to produce reusable evidence and design 

principles. Building on this rationale, the present study 

focuses on deep learning outcomes such as 

understanding and transfer, systematically investigates 
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the key design features of AI instructional games and 

their mechanisms of action. As a mainstream teaching 

model nowadays, the evaluation and improvement of 

deep learning capabilities in blended learning have 

become a research focus in the field of educational 

technology [4]. However, as an important interactive 

carrier of blended learning, AI-driven educational games 

still face an inherent mechanism issue that needs to be 

explored: How to promote the achievement of deep 

learning through scientific design. This paper poses the 

following research questions: 

RQ1: Which key design features of AI-enabled 

educational games can significantly enhance students’ 

learning outcomes? 

RQ2: Through which learning process mechanisms do 

these design features exert their effects? 

Literature review 

Key design characteristics of AI-based educational 

games and their effects on learning outcomes 

A substantial body of research indicates that carefully 

designed educational games can effectively enhance 

student learning outcomes. Educational games that 

integrate artificial intelligence embody a set of design 

features conducive to promoting deep learning [5]. 

Adaptive personalization: AI enables games to 

dynamically adjust task contexts and difficulty according 

to student performance, thereby providing appropriate 

challenges for learners at different levels. This 

individualized adaptation has been shown to enhance 

learning outcomes. Studies report that, compared with 

traditional instruction, such adaptive games significantly 

improve students’ conceptual understanding and skill 

mastery and meaningfully enhance learning attitudes [6]. 

Notably, learners with low prior knowledge exhibit 

larger gains from adaptive games, indicating that 

personalized difficulty modulation is particularly 

beneficial for students with weaker foundations. 

Intelligent feedback and scaffolding: AI-driven 

educational games can deliver timely, personalized 

feedback and guidance that help students correct errors 

and reflect on learning strategies during practice. 

Empirical work has found that cognitive feedback from 

virtual intelligent tutors can, in some cases, improve 

student performance more effectively than feedback 

from human instructors [7]. Meta-analytic evidence 

further indicates that embedding instructional scaffolds 

within games substantially improves learning outcomes 

and promotes transfer of acquired knowledge to real-

world contexts. However, the design of feedback 

requires careful calibration: overly frequent feedback or 

feedback that makes excessive decisions on behalf of 

learners can be counterproductive. A higher-education 

experiment reported that adaptive feedback generated by 

large language models did not improve task performance 

and instead reduced students’ interest in learning [8]. 

This effect was attributed to excessive feedback 

undermining learners’ sense of autonomy and 

competence. Thus, while intelligent feedback should 

provide cognitive support, it must preserve student 

autonomy. 

Gamified incentive mechanisms: AI-enhanced 

educational games commonly incorporate gamification 

elements to stimulate motivation and sustain engagement. 

Such incentive mechanisms positively influence students’ 

affective and behavioral engagement, but their direct 

impact on cognitive achievement should be interpreted 

cautiously [9]. A study comparing badges and 

leaderboards in an online course found that neither 

element produced significant effects on quiz scores. 

However, most students reported favorable attitudes, 

perceiving these elements as motivating and wishing to 

retain them in the course. Consequently, gamified 

incentives primarily support learning indirectly by 

increasing enjoyment and willingness to engage. Their 

effects on learning outcomes often manifest only when 

integrated with other instructional design features. 

These features constitute the intelligent capabilities and 

interaction design of AI-driven educational games. 

Overall, AI educational games that incorporate adaptive 

adjustment, timely feedback, and gamified incentives 

have been shown to better engage students and enhance 

learning performance. The combination of these key 

characteristics transforms instructional games from static 

scripts into intelligent interactive systems, thereby 

achieving significant improvements in student learning 

outcomes. 

Mechanisms of design features: Intrinsic processes 

that promote deep learning 

The ability of AI-based instructional games to foster deep 

learning outcomes such as understanding and transfer 

rests on how their design features positively influence 

students’ cognitive and motivational processes. First, 
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they promote immersion and sustained attention. 

Dynamic difficulty adjustment and clearly articulated, 

hierarchical objectives align game challenges with 

students’ abilities, preventing boredom from tasks that 

are too easy and frustration from tasks that are too hard, 

thereby inducing a flow-like state of intense focus. In this 

state, students devote themselves fully to tasks, 

extending effective learning time and deepening 

knowledge processing and comprehension. Research 

shows that when instructional scaffolds are embedded 

within games, students may complete fewer levels on 

average but spend more time on each level and 

experience lower frustration. This pattern suggests that 

appropriate interventions can steer students toward 

deeper problem contemplation, even if immediate 

progress slows, such engagement ultimately supports 

improvements in knowledge transfer. 

Second, AI instructional games enhance motivation and 

engagement. They evoke intrinsic motivation by 

satisfying students’ basic psychological needs. Adaptive 

challenges and timely positive feedback sustain a sense 

of competence, while situational choices and open-ended 

exploration within the game strengthen autonomy. These 

factors align with self-determination theory and 

contribute to the emergence of students’ intrinsic 

learning motivation and initiative [10]. Moreover, 

moderate competition and reward mechanisms typically 

elevate students’ enthusiasm and persistence. Although 

extrinsic incentives do not necessarily directly raise 

academic performance, the enjoyment and sense of 

achievement they generate can alleviate the tedium of 

purely didactic tasks and thereby indirectly support 

cognitive engagement. 

Third, they optimize cognitive processing and reflection. 

Intelligent feedback and instructional scaffolds act 

directly on students’ cognitive processes. High-quality, 

timely feedback can correct misconceptions, provide 

cures for problem solving, and prompt students to reflect 

on and adjust their understanding. When games guide 

students to watch brief explanatory videos or summaries 

after actions, self-reflection is strengthened, which in 

turn fosters deeper comprehension and transfer [11]. 

Notably, AI agents embedded in learning games can 

detect and respond to students’ emotional states, using 

encouraging dialogue or task adjustments to alleviate 

negative effects. Such emotional support helps students 

maintain a positive stance and learning resilience. 

Studies indicate that appropriate affective feedback 

within games can reduce off-task behavior and boredom, 

boost engagement. Through an extra layer of emotion-

regulation mechanisms, it encourages students to 

experiment and tolerate errors in a safe, supportive 

atmosphere, viewing failure as chance for growth [12]. 

In summary, AI-driven educational games exert their 

instructional effects by enhancing engagement, eliciting 

intrinsic motivation, and optimizing cognitive and 

affective processes. Key design features operate 

synergistically. Adaptive challenge sustains continued 

investment, timely feedback and scaffolding deepen 

knowledge construction, and contextual incentives along 

with virtual agents safeguard motivation and emotional 

equilibrium. This multi-layered process optimization 

explains why AI educational games are more likely to 

foster deep understanding and transfer of knowledge. 

When well-designed intelligent functions are combined 

with gamification strategies, students “learn by playing”, 

undergoing highly engaging, feedback-rich learning 

trajectories that yield outcomes superior to traditional 

methods. Attention must also be paid to balancing 

challenges and support, autonomy and guidance in 

design, to avoid undermining students’ opportunities for 

autonomous reflection and interest through excessive 

intervention. Only design strategies grounded in 

mechanistic evidence can fully realize the potential of AI 

educational games to promote deep learning. 

Research methods 

Study design and technical approach 

This study employed a questionnaire survey and 

validated the theoretical model using structural equation 

modeling (SEM). SEM was chosen because AI-driven 

instructional games constitute a composite intervention 

characterized by “intelligent functionality - gamified 

interaction - instructional design”. Its effects often 

influence learning outcomes indirectly through learners’ 

key process variables (e.g., flow/immersion, cognitive 

engagement). SEM enables simultaneous handling of 

multiple latent variables, measurement error, and 

mediation effects. Meta-analytic evidence from serious 

games research also indicates that the learning 

advantages of instructional games are often associated 

with changes in cognitive and motivational processes. 



Global Education Bulletin                                                                                                        2025,2(5):73-83 

https://www.wonford.com/                                              76 

This supports an examination approach centered on 

process mechanisms. 

Variable construction and operational definitions 

To ensure that the design features are both theoretically 

grounded and pedagogically practicable, this study 

synthesizes and references three categories of frequently 

used frameworks to derive design dimensions: 

Game attributes - learning classification evidence: The 

game-attributes taxonomy highlights that rules and goals, 

challenge, control, feedback and assessment, immersion, 

and social interaction are core attributes related to 

learning and can be adjusted through design. 

Flow/experience-oriented models: Game Flow proposes 

eight elements including clear goals, challenges, control, 

feedback, immersion, and social interaction. EGame 

Flow further provides quantifiable dimensions applicable 

to educational games. 

Mapping of instructional design to serious game 

mechanics: Related studies emphasize aligning learning 

activities, learning outcomes, and assessment/feedback 

mechanisms with game mechanics to support reusable 

instructional designs and classroom implementation. 

Considering the salient features of AI-driven educational 

games and drawing on empirical research, intelligent 

agents’ feedback and AI-generated adaptive feedback 

can produce a “double-edged effect” of learning gains or 

diminished interest. We therefore incorporate “adaptive 

challenge” and “diagnostic feedback/scaffolding” as key 

AI design dimensions. 

Questionnaire design and model 

This study employed a standardized questionnaire to 

measure the key design features of AI-based instructional 

games, the mediating learning-process mechanisms, and 

resulting learning outcomes. The questionnaire used “the 

most recent AI instructional game you encountered or 

used” as a fixed referent. Respondents were instructed to 

answer based on their actual experience with that specific 

game (for students) or their observations of typical 

student performance (for teachers), to reduce reference 

drift and recall bias. The instrument primarily used 

5-point Likert items (1= strongly disagree, 5= strongly 

agree) and comprised seven latent variables measured by 

21 items. Four design-feature dimensions include clarity 

of goals and rules (D1, 3 items), adaptive challenge (D2, 

3 items), diagnostic feedback (D3, 3 items), and sense of 

autonomy and control (D4, 3 items). Two process-

mechanism dimensions are flow/immersion experience 

(M1, 3 items) and cognitive engagement (M2, 3 items). 

Learning outcome is represented by deep learning 

effectiveness in understanding and transfer (Y, 3 items). 

Based on the theoretical pathway “design features - 

process mechanisms - learning outcomes” the structural 

model specified that D1-D4 each positively predict M1 

and M2, M1 and M2 in turn positively predict Y, and 

direct effects from D1-D4 to Y were allowed to test for 

partial versus full mediation. Individual background 

variables were included as control variables to improve 

estimation robustness. After assessing scale reliability 

and validity via confirmatory factor analysis, the model 

can be tested using structural equation modeling to 

estimate path coefficients and mediation effects. This 

helps identify which design features of AI instructional 

games are effective and through which process 

mechanisms they operate. 

Study population, sampling, and data collection 

The study population comprised frontline teachers and 

students who had interacted with or used AI educational 

games within the most recent academic semester. 

Samples were collected using a combination of 

convenience sampling and snowball sampling, primarily 

through online questionnaires. At the beginning of the 

questionnaire respondents were instructed to use “the 

most recently encountered AI educational game” as a 

fixed reference point to mitigate recall bias. The survey 

was conducted anonymously and on the principles of 

informed consent and voluntary participation. 

Data analysis method 

Data analysis proceeded through data preprocessing, 

measurement model evaluation, and structural model 

assessment. First, missing values, outliers, and normality 

were examined; missing data were addressed using EM 

estimation or multiple imputation depending on the 

proportion and mechanism of missingness. Prior 

knowledge, gaming experience, frequency of AI use, and 

duration of use were included as control variables in the 

models. Second, confirmatory factor analysis (CFA) was 

conducted to assess the reliability and validity of the 

measurement model. Cronbach’s α, composite reliability 

(CR), and average variance extracted (AVE) were 

reported to evaluate internal consistency and convergent 

validity, and discriminant validity was assessed using the 

Fornell-Larcker criterion. Conditional on acceptable 
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measurement-model fit, structural model path 

coefficients were then estimated and overall model fit 

indices reported. 

Data validation and analysis 

A total of 210 valid questionnaires were collected, upon 

which data validation and analysis were conducted. 

Data inspection 

The Cronbach’s alpha coefficient was 0.979, indicating 

excellent reliability of the questionnaire (Figure 1). 

Table 1. Reliability test. 

Cronbach’s 

alpha 

Standardized 

Cronbach’s alpha 

Number of 

items 

Sample 

size (N) 

0.979 0.980 21 210 

 

The KMO value was 0.982, indicating a degree of 

suitability (Figure 2). 

Table 2. Validity assessment. 

Test Statistic Value 

KMO measure of sampling 

adequacy 
KMO 0.982 

Bartlett’s test of sphericity 

Approx. Chi-

Square 
4623.338 

df 210 

Sig. (p-value) 0.000*** 

 

SEM structural equation analysis 

This study used SEM to analyze validated data, verifying 

causal links and mediating effects to test the theoretical 

framework. 

Table 3. Factor loading coefficients. 

Factor Item Statement (English) 
Unstandardized 

coefficient 

Standardized 

loading 
Z 

Standard 

errors 
p 

Clarity of goals 

and rules 

D1-1 

I can clearly know the learning 

objectives to be achieved for 

each task/level. 

1.000 0.794 / / / 

D1-2 

The task rules and completion 

criteria are clear, and I do not 

need to repeatedly guess. 

0.986 0.833 14.141 0.070 0.000*** 

D1-3 

I clearly understand how the 

system determines 

“correct/incorrect” or 

“completed/not completed”. 

0.975 0.811 13.627 0.072 0.000*** 

Adaptive 

challenge 

D2-1 

The system adjusts subsequent 

task difficulty or hint intensity 

based on performance. 

1.000 0.805 / / / 

D2-2 

Overall, the task difficulty 

matches my (or students’) 

ability level. 

0.884 0.768 12.888 0.069 0.000*** 

D2-3 

When I (or students) get stuck, 

the system provides a more 

appropriate next task or 

support. 

0.930 0.784 13.264 0.070 0.000*** 

Diagnostic 

feedback 

D3-1 

I can receive timely feedback 

on whether my answer/action 

is correct. 

1.000 0.889 / / / 

D3-2 

The feedback explains the 

reasons for errors or key 

concepts, rather than only 

indicating right/wrong. 

0.964 0.867 18.592 0.052 0.000*** 
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Factor Item Statement (English) 
Unstandardized 

coefficient 

Standardized 

loading 
Z 

Standard 

errors 
p 

D3-3 

The feedback provides 

actionable suggestions for 

improvement (e.g., what to do 

next, how to adjust strategies). 

0.774 0.876 19.005 0.041 0.000*** 

Autonomy and 

control 

D4-1 

I can choose different solution 

paths/strategies to complete 

the task. 

1.000 0.869 / / / 

D4-2 

The game allows me to 

explore and try at my own 

pace, rather than being forced 

to progress. 

0.938 0.855 17.245 0.054 0.000*** 

D4-3 

I can review process 

information 

(records/hints/explanations) to 

adjust my learning strategies. 

1.261 0.853 17.158 0.073 0.000*** 

Flow/Immersion 

M1-1 
During gameplay, I feel highly 

focused. 
1.000 0.863 / / / 

M1-2 
I often do not notice the 

passage of time. 
0.982 0.857 17.100 0.057 0.000*** 

M1-3 

Even when I encounter 

difficulties, I am willing to 

keep trying and do not give up 

easily. 

1.085 0.789 14.732 0.074 0.000*** 

Cognitive 

engagement 

M2-1 

I try to connect new 

information with prior 

knowledge to understand it. 

1.000 0.879 / / / 

M2-2 

I check whether I truly 

understand the underlying 

principles behind the task, 

rather than just completing it. 

0.969 0.869 18.235 0.053 0.000*** 

M2-3 

After failures or errors, I 

reflect on the reasons and 

adjust my strategies. 

1.052 0.864 18.041 0.058 0.000*** 

Understanding 

and transfer 

Y-1 

I can explain the key 

concepts/principles involved 

in the game in my own words. 

1.000 0.801 / / / 

Y-2 

I can summarize general 

methods or rules for solving 

this type of problem. 

1.196 0.753 12.485 0.096 0.000*** 

Y-3 

When encountering new 

problems/situations, I can 

transfer what I learned in the 

game to solve them. 

1.045 0.874 15.386 0.068 0.000*** 
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The factor loading table indicates that all observed 

variables exhibit standardized loadings on their 

respective latent constructs above the recommended 

threshold of 0.700 (range 0.753-0.889), demonstrating 

satisfactory convergent validity for the scales. All 

unstandardized coefficients are significant (p<0.001), 

with Z-values ranging from 12.485 to 19.005, indicating 

that each observed variable explains its latent construct 

at a statistically significant level. Notably, within the 

“diagnostic feedback” dimension, item D3-1 (feedback 

on whether my answer) has the highest standardized 

loading of 0.889, reflecting the central role of actionable 

guidance in the feedback mechanism. Conversely, in the 

“understanding and transfer” dimension, item Y-2 

(summarizing general methods) has a relatively lower 

loading of 0.753. This may suggest that abstract 

generalization is more challenging than concrete 

knowledge transfer. Internal reliability of each 

dimension is supported by consistently high loadings 

across three indicators. For example, all three 

Standardized loading for the “cognitive engagement” 

dimension fall between 0.864 and 0.879. Standard errors 

are tightly controlled within a small range, attesting to 

precise parameter estimation. Model specification 

adequacy is reflected by: (1) Fixing the first indicator 

loading of each latent variable to 1 to establish the 

measurement scale. (2) All free-estimated parameters 

exhibiting standard errors below 0.1 and significance 

levels of p<0.001, indicating sufficient sample size and 

good model identification. The sole outlier is item D4-3 

in the “autonomy and control” dimension, whose 

unstandardized coefficient reaches 1.261, possibly 

reflecting a particular contribution of retrospective 

functions to autonomy. However, its standardized 

loading (0.853) remains consistent within the dimension. 

Overall, the data supports that the measurement model 

possesses satisfactory reliability and validity metrics, 

with each latent construct being effectively measured by 

its observed indicators, thereby providing a sound basis 

for subsequent structural model analysis (Figure 3). 

Table 4. Model regression coefficients. 

Factor (latent variable) → Outcome (latent 

variable) 

Unstandardized 

coefficient 

Standardized 

coefficient 

Standard 

errors 
Z p 

Clarity of goals and rules → Diagnostic 

feedback 
1.404 1 0.095 14.761 0.000*** 

Diagnostic feedback →Adaptive challenge 0.911 1 0.058 15.785 0.000*** 

Adaptive challenge → Autonomy and control 0.849 1 0.055 15.305 0.000*** 

Autonomy and control → Flow/Immersion 1.069 1 0.061 17.496 0.000*** 

Flow/Immersion → Cognitive engagement 0.892 1 0.050 17.955 0.000*** 

Cognitive engagement → Understanding and 

transfer 
0.940 1 0.061 15.535 0.000*** 

The regression coefficients table for this structural 

equation model indicates that both unstandardized and 

standardized coefficients for all paths are highly 

statistically significant (p=0.000). This demonstrates 

that the causal path relationships between latent and 

observed variables, as well as among latent variables, are 

strongly supported. The unstandardized coefficient show 

that a one-unit increase in the latent variable “clarity of 

goals and rules” corresponds to a 1.404-unit increase in 

“diagnostic feedback”. Subsequent path coefficients 

decrease sequentially but remain stable, with the effect 

of “flow/immersion” on “cognitive engagement” equal 

to 0.892 and the effect of “cognitive engagement” on 

“understanding and transfer” rising again to 0.940. The 

standardized coefficient is all 1, indicating that the model 

was standardized using a fixed-loading approach and that 

the paths exhibit identical fully standardized magnitudes. 

The Z-values for all paths greater than or equal to 14.761 

(the critical value 2.580 for p<0.001), indicating highly 

precise parameter estimates, with standard errors 
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controlled within a small range of 0.050-0.095, further 

validating the stability of the model estimates. Notably, 

the “flow/immersion → cognitive engagement” path 

attains the highest Z-value (17.955), representing the 

most significant relationship among all paths, whereas 

the initial path “clarity of goals and rules → diagnostic 

feedback” has the relatively lowest Z-value (14.761). 

The overall model exhibits a complete causal chain, with 

each stage from goal clarity to ultimate learning transfer 

highly significant. This confirms the effectiveness of the 

hypothesized multilevel transmission mechanism from 

environmental features to cognitive outcomes (Figure 4). 

Table 5. Model fit indices. 

Fit index 
Recommended 

criterion 
Result 

χ² (Chi-square) / 240.373 

df / 183.000 

p >0.05 0.003*** 

χ²/df (Normed Chi-

square) 
<3.00 1.314 

GFI >0.90 0.950 

RMSEA <0.10 0.039 

RMR >0.05 0.271 

CFI >0.90 0.988 

NFI >0.90 0.950 

NNFI (TLI) >0.90 0.986 

 

Model fit indices indicate a good fit between the data and 

the theoretical model. The chi-square test was significant 

(χ²= 240.373, df= 183.000, p= 0.003***). However, 

because the chi-square statistics are sensitive to sample 

size, it should be interpreted in conjunction with other 

indices. The chi-square to degrees-of-freedom ratio was 

1.314 (<3.00), indicating acceptable model parsimony. 

The Goodness of Fit Index (GFI) was 0.950 (>0.90), 

Root Mean Square Error of Approximation (RMSEA) 

was 0.039 (<0.10), and Root Mean Square Residual 

(RMR) was 0.271 (above the ideal threshold of 0.05), 

reflecting acceptable absolute fit. Comparative Fit Index 

(CFI) (0.988), Normed Fit Index (NFI) (0.950), and Non-

Normed Fit Index (NNFI) (0.986) - all exceeded the 

0.900 criterion, indicating excellent incremental fit. 

Although the RMR was somewhat elevated, the 

remaining indices met or exceeded recommended 

standards, overall suggesting a well-specified model with 

a high degree of correspondence between the data and the 

theoretical framework (Figure 5). 

Discussion 

This study, organized along the framework “design 

features - process mechanisms - learning outcomes”, 

employed structural equation modeling on 210 valid 

samples to examine the internal mechanisms by which 

AI-driven instructional games promote deep learning 

(understanding and transfer). Overall, the measurement 

model demonstrated stable reliability and validity, and 

the structural model exhibited acceptable fit indices 

overall, indicating that the proposed mechanistic chain is 

supported empirically. 

First, regarding “which key design features can 

significantly enhance learning outcomes” (RQ1). The 

results indicate that the critical design elements of AI 

instructional games do not operate as independent, 

parallel factors. Instead, they tend to form a progressive, 

combinatorial relationship: clear goals and rules 

significantly predict diagnostic feedback; diagnostic 

feedback is further associated with adaptive challenge; 

adaptive challenge is linked to autonomy and control. 

Ultimately, through increased flow/immersion and 

cognitive engagement, this sequence facilitates 

comprehension and transfer. In other words, learners 

may experience these design elements on an experiential 

level as a coherent progression “from intelligible (goals 

and rules) to correctable (diagnostic feedback), then to 

matchable (adaptive challenge), and finally to 

controllable (autonomy and control)”. Together, these 

elements constitute a learning context that sustains 

engagement and thereby supports deeper knowledge 

construction and transfer. This finding also suggests that 

in classroom implementations of AI instructional games, 

merely “stacking features” at isolated points may not 

yield equivalent benefits. What is more critical is 

organizing design elements according to the logic of the 

learning process, so that they form a continuous 

experiential chain perceptible to learners. 

Second, regarding “through which process mechanisms 

effects are exerted” (RQ2). This study validates the key 

transmission pathway of “flow/immersion - cognitive 

engagement”, and further demonstrates that cognitive 

engagement is a more critical direct predictor of 

comprehension and transfer. In other words, 
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flow/immersion functions more like a state-based 

precondition of attention and persistence that creates 

temporal and resource conditions for deep processing. 

The core link that actually drives improvements in 

comprehension and transfer is whether learners engage 

in active meaning construction and strategy adjustments, 

such as connecting prior knowledge, testing 

understanding, reflecting on errors and adjusting 

accordingly. Mechanistically: (1) Clear goals and rules 

reduce task uncertainty and trial-and-error costs, 

decreasing ineffective search and allowing cognitive 

resources to be allocated more to conceptual and 

principled processing. (2) Diagnostic feedback 

(especially actionable improvement suggestions) 

provides learners with causal cues about “why it was 

wrong and how to fix it”, prompting reflection and 

strategy updating. (3) Adaptive challenge keeps tasks 

within a “reachable yet demanding” range, suppressing 

boredom while alleviating frustration and thereby 

providing conditions for flow. (4) Autonomy and control 

enhance learners’ sense of mastery over pacing, 

pathways, and opportunities to revisit content, making 

them more likely to employ self-regulation strategies and 

thus convert immersive experience into effective 

cognitive engagement. Overall, AI functionalities do not 

directly “replace learning”, rather, they indirectly 

promote deep learning outcomes by optimizing learners’ 

attention, feedback processing, and opportunities for 

self-regulation. 

Third, this study’s theoretical and empirical 

contributions are manifested in two main aspects. 

Initially, it incorporates design features of AI-based 

instructional games that are often “functionally described” 

into a mechanistic testing framework, thereby providing 

an explicable pathway from environmental features to 

deep learning outcomes. This helps translate “what AI 

can do” into “which design elements produce which 

learning changes”. 

Next, the sequential chains revealed by the structural 

model offer a more parsimonious empirical account of 

the composite-intervention nature of instructional games: 

Design elements may exhibit temporal dependencies and 

mutual support relationships, while mechanistic 

variables (flow/immersion, cognitive engagement) serve 

as pivotal “transformative” mediators. These findings 

align with existing explanatory accounts emphasizing 

flow, self-determination, and scaffolding-reflection 

facilitation of transfer, and further reinforce through 

SEM evidence the design rationale that process variables 

function as critical levers. 

Fourth, the practice-oriented implications can be 

summarized as “clarify first, diagnose second, adapt later, 

and preserve autonomy”. Specifically: (1) Prioritizing 

making goals, rules, and evaluation criteria transparent 

and visible to reduce students’ energy spent on “guessing 

how the system judges”. (2) Upgrading feedback from 

mere “right/wrong notification” to “explanation of 

reasons + next-step suggestions”, while controlling 

frequency and level of intervention to avoid undermining 

autonomy. (3) Adaptivity should not be limited to 

adjusting difficulty but should also include “appropriate 

supports and sequencing of subsequent tasks when a 

student is stuck”, in order to maintain challenge-ability 

alignment. (4) Providing students with options for 

pathways, pace control, and review/rewind tools to 

enable self-regulation. (5) At the classroom 

implementation level, align learning-process data (dwell 

time, error types, hint usage, review behaviors, etc.) with 

indicators of cognitive engagement to diagnose whether 

students are engaging in deep processing rather than 

merely “clearing the level”. 

Fifth, the generalizability of the study’s conclusions 

should be treated with caution. This study has several 

limitations: (1) The sample was obtained through 

convenience and snowball sampling and relied primarily 

on self-report questionnaires, which may be subject to 

common method bias and social desirability effects. (2) 

Using the “most recently encountered AI educational 

game” as the reference point, while reducing reference 

drift, may still introduce recall bias and confounding due 

to differences in specific game types. (3) The study is 

cross-sectional, and although SEM path estimates 

support the theoretical directions, they cannot be directly 

equated with causal effects. (4) Very high Cronbach’s 

alpha coefficients indicate strong internal consistency 

but may also reflect some item redundancy; future work 

should refine items and test the robustness of 

discriminant validity. (5) Among the fit indices, an 

elevated RMR suggests that unexplained structure may 

remain at the residual level; future studies should 

additionally report SRMR, test alternative models, and 

diagnose local misfit. 
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Sixth, future research can proceed along three avenues: 

To begin with, conduct experimental or quasi-

experimental studies that manipulate single design 

elements to test causal effects and compare heterogeneity 

across disciplines and task types. Subsequently, 

incorporate objective learning outcomes and transfer 

tests, process log data, and behavioral metrics to 

construct a multi-source evidence chain of “subjective 

experience - objective behavior - learning outcomes”. 

Ultimately, test key moderating variables and assess 

multi-group equivalence to clarify “for whom and under 

what conditions it is more effective”, thereby translating 

mechanistic conclusions into actionable guidelines for 

differentiated design. 

Conclusion 

This study investigates the mechanisms by which AI-

based instructional games promote deep learning, and 

constructs and tests a structural model linking “design 

features - process mechanisms - learning outcomes”. The 

results indicate that critical design elements - clear goals 

and rules, diagnostic feedback, adaptive challenge, and 

the balance between autonomy and control - do not 

operate in isolation. Instead, they function through 

supportive and progressive interactions. These elements 

primarily enhance learners’ flow/immersion and 

cognitive engagement, which in turn facilitate improved 

comprehension and transfer. Overall, the study provides 

empirical support for shifting AI instructional game 

development from a “feature-stacking” approach to a 

“mechanism-oriented design” paradigm. It also offers 

actionable design and implementation recommendations 

for classroom practice. 

Against the backdrop of ongoing digitalization and 

intelligent transformation in education, the value of AI-

powered instructional games lies not only in enhancing 

the learning experience. They also facilitate learners’ 

higher-order cognitive processing and knowledge 

transfer in an interpretable and controllable manner. 

Future research must further deepen efforts in more 

rigorous causal inference, multi-source data triangulation, 

and validation across diverse contexts. This will help 

advance AI instructional games toward more robust and 

sustainable learning gains in authentic educational 

settings. 
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