Review and Prospect of Post-COVID-19 Syndrome: New Challenges Faced by Public Health Nursing in the Future

Bing Zhang*, Xinyi Cui, Zihan Wang, Zhengyang Gao, Fanxiang Meng, Kun Liu, Yuting Qian
North Henan Medical University, Xinxiang 453003, China
*Corresponding email: zhangbing02252006@126.com
https://doi.org/10.71052/jdph/SHDW4714

Objective: This paper aims to review research progress on COVID-19 sequelae to enhance attention to their complexity and social impacts. Study design: A systematic review was conducted by integrating global epidemiological data, clinical studies, and mechanistic analyses to systematically summarize existing findings. Methods: Published literature was screened and analyzed, covering the epidemiological characteristics of sequelae (e.g., incidence, population distribution), clinical manifestations (multisystem impacts on respiratory, neurological, cardiovascular systems, etc.), potential mechanisms (viral persistence, immune dysregulation, organ damage), and prevention/treatment strategies (vaccination, rehabilitation therapy, etc.). Results: Approximately 5%-10% of infected individuals develop long-term sequelae, with higher risks observed in women, severe cases, and those with underlying conditions. Neurocognitive impairment, pulmonary fibrosis, and cardiovascular damage are major manifestations, with mechanisms closely linked to viral persistence, chronic inflammation, and immune disorders. Vaccination may reduce sequelae risk, though more evidence is needed to support its efficacy. Conclusion: COVID-19 sequelae represent a multisystem, multifactorial health challenge that requires enhanced mechanistic research, optimized diagnostic and treatment systems, and global responses through interdisciplinary collaboration and social support.

References
[1] Kumar, A., Singh, R., Kaur, J., Pandey, S., Sharma, V., Thakur, L., Kumar, N. (2021) Wuhan to world: the COVID-19 pandemic. Frontiers in Cellular and Infection Microbiology, 11, 596201.
[2] Rong, Z., Mai, H., Ebert, G., Kapoor, S., Puelles, V. G., Czogalla, J., Ertürk, A. (2024) Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host & Microbe, 32(12), 2112-2130.
[3] Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., Sepulveda, R., Rebolledo, P. A., Cuapio, A., Villapol, S. (2021) More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Scientific Reports, 11(1), 16144.
[4] O’Mahoney, L. L., Routen, A., Gillies, C., Ekezie, W., Welford, A., Zhang, A., Khunti, K. (2023) The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine, 55.
[5] Huang, L., Li, X., Gu, X., Zhang, H., Ren, L., Guo, L., Cao, B. (2022) Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. The Lancet Respiratory Medicine, 10(9), 863-876.
[6] Yazici, S. (2022) A new part of life covid: female sexual dysfunction. The Journal of Sexual Medicine, 19(11), S73.
[7] Fuchs, A., Matonóg, A., Pilarska, J., Sieradzka, P., Szul, M., Czuba, B., Drosdzol-Cop, A. (2020) The impact of COVID-19 on female sexual health. International Journal of Environmental Research and Public Health, 17(19), 7152.
[8] Davies, N. G., Klepac, P., Liu, Y., Prem, K., Jit, M., Eggo, R. M. (2020) Age-dependent effects in the transmission and control of COVID-19 epidemics. Nature Medicine, 26(8), 1205-1211.
[9] Hersh, Z., Weisband, Y. L., Bogan, A., Leibovich, A., Obolski, U., Nevo, D., Gilad-Bachrach, R. (2024) Impact of Long-COVID in children: a large cohort study. Child and Adolescent Psychiatry and Mental Health, 18(1), 48.
[10] Magnusson, K., Skyrud, K. D., Suren, P., Greve-Isdahl, M., Størdal, K., Kristoffersen, D. T., Telle, K. (2022) Healthcare use in 700,000 children and adolescents for six months after covid-19: before and after register based cohort study. BMJ, 376.
[11] Chen, C., Haupert, S. R., Zimmermann, L., Shi, X., Fritsche, L. G., Mukherjee, B. (2022) Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. The Journal of Infectious Diseases, 226(9), 1593-1607.
[12] Al-Aly, Z., Xie, Y., Bowe, B. (2021) High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259-264.
[13] Blomberg, B., Mohn, K. G. I., Brokstad, K. A., Zhou, F., Linchausen, D. W., Hansen, B. A., Langeland, N. (2021) Long COVID in a prospective cohort of home-isolated patients. Nature Medicine, 27(9), 1607-1613.
[14] Oliveira, R. K., Nyasulu, P. S., Iqbal, A. A., Hamdan Gul, M., Ferreira, E. V., Leclair, J. W., de Jesus Perez, V. (2022) Cardiopulmonary disease as sequelae of long-term COVID-19: current perspectives and challenges. Frontiers in Medicine, 9, 1041236.
[15] Li, C., Qian, W., Wei, X., Narasimhan, H., Wu, Y., Arish, M., Sun, J. (2024) Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae after acute COVID-19. Science Translational Medicine, 16(756), eadn0136.
[16] Graham, E. L., Clark, J. R., Orban, Z. S., Lim, P. H., Szymanski, A. L., Taylor, C., Koralnik, I. J. (2021) Persistent neurologic symptoms and cognitive dysfunction in non‐hospitalized Covid‐19 “long haulers”. Annals of Clinical and Translational Neurology, 8(5), 1073-1085.
[17] Pang, Z., Tang, A., He, Y., Fan, J., Yang, Q., Tong, Y., Fan, H. (2024) Neurological complications caused by SARS-CoV-2. Clinical Microbiology Reviews, 37(4), e00131-24.
[18] Vogrig, A., Gigli, G. L., Bna, C., Morassi, M. (2020) Stroke in patients with COVID-19: clinical and neuroimaging characteristics. Neuroscience Letters, 743, 135564.
[19] Monllor, P., Kumar, P., Lloret, M. Á., Ftara, A., Leon, J. L., Lopez, B., Lloret, A. (2023) Multifactorial causation of Alzheimer’s disease due to COVID-19. Journal of Alzheimer’s Disease, 96(4), 1399-1409.
[20] Yong, S. J., Halim, A., Liu, S., Halim, M., Alshehri, A. A., Alshahrani, M. A., Rabaan, A. A. (2023) Pooled rates and demographics of POTS following SARS-CoV-2 infection versus COVID-19 vaccination: systematic review and meta-analysis. Autonomic Neuroscience, 250, 103132.
[21] Salcan, İ., Karakeçili, F., Salcan, S., Ünver, E., Akyüz, S., Seçkin, E., Cingi, C. (2021) Is taste and smell impairment irreversible in COVID-19 patients? European Archives of Oto-rhino-laryngology, 278(2), 411-415.
[22] Mastrangelo, A., Bonato, M., Cinque, P. (2021) Smell and taste disorders in COVID-19: from pathogenesis to clinical features and outcomes. Neuroscience Letters, 748, 135694.
[23] Orak, S. A., Kubur, Ç. Ç., Atasever, A. K., Polat, M. (2023) Two case reports and a literature review of typical GBS and rare GBS variants associated with COVID-19. Archives De Pédiatrie, 30(4), 236-239.
[24] Pimentel, V., Luchsinger, V. W., Carvalho, G. L., Alcará, A. M., Esper, N. B., Marinowic, D., da Costa, J. C. (2023) Guillain–Barré syndrome associated with COVID-19: a systematic review. Brain, Behavior, & Immunity-health, 28, 100578.
[25] Krishna, H., Ryu, A. J., Scott, C. G., Mandale, D. R., Naqvi, T. Z., Pellikka, P. A. (2021) Cardiac abnormalities in COVID-19 and relationship to outcome. Mayo Clinic Proceedings, 96(4), 932-942.
[26] Chung, M. K., Zidar, D. A., Bristow, M. R., Cameron, S. J., Chan, T., Harding III, C. V., Loscalzo, J. (2021) COVID-19 and cardiovascular disease: from bench to bedside. Circulation Research, 128(8), 1214-1236.
[27] Long, B., Brady, W. J., Koyfman, A., Gottlieb, M. (2020) Cardiovascular complications in COVID-19. The American Journal of Emergency Medicine, 38(7), 1504-1507.
[28] Ong, P., Safdar, B., Seitz, A., Hubert, A., Beltrame, J. F., Prescott, E. (2020) Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovascular Research, 116(4), 841-855.
[29] Xie, N. N., Zhang, W. C., Chen, J., Tian, F. B., Song, J. X. (2023) Clinical characteristics, diagnosis, and therapeutics of COVID-19: a review. Current Medical Science, 43(6), 1066-1074.
[30] Cichoż-Lach, H., Michalak, A. (2021) Liver injury in the era of COVID-19. World Journal of Gastroenterology, 27(5), 377.
[31] Bedair, N. I., Abdelaziz, A. S., Abdelrazik, F. S., El-Kassas, M., AbouHadeed, M. H. (2024) Post Covid telogen effluvium: the diagnostic value of serum ferritin biomarker and the preventive value of dietary supplements. a case control study. Archives of Dermatological Research, 316(6), 336.
[32] Subramanian, A., Nirantharakumar, K., Hughes, S., Myles, P., Williams, T., Gokhale, K. M., Haroon, S. (2022) Symptoms and risk factors for long COVID in non-hospitalized adults. Nature Medicine, 28(8), 1706-1714.
[33] Ceban, F., Ling, S., Lui, L. M., Lee, Y., Gill, H., Teopiz, K. M., McIntyre, R. S. (2022) Fatigue and cognitive impairment in post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain, Behavior, and Immunity, 101, 93-135.
[34] Becker, R. C. (2020) COVID-19 update: COVID-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis, 50(1), 54-67.
[35] Rong, Z., Mai, H., Ebert, G., Kapoor, S., Puelles, V. G., Czogalla, J., Ertürk, A. (2024) Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host & Microbe, 32(12), 2112-2130.
[36] Frank, M. G., Ball, J. B., Hopkins, S., Kelley, T., Kuzma, A. J., Thompson, R. S., Maier, S. F. (2024) SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: a role for corticosteroids. Brain, Behavior, and Immunity, 121, 87-103.
[37] Gu, X., Wong, C. C., Cao, B. (2024) Authors’ reply to letter regarding “probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivor”. EBioMedicine, 101.
[38] Chu, H., Chan, J. F. W., Wang, Y., Yuen, T. T. T., Chai, Y., Hou, Y., Yuen, K. Y. (2020) Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clinical Infectious Diseases, 71(6), 1400-1409.
[39] Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W., Abbate, A. (2021) Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology, 21(5), 319-329.
[40] Sette, A., Crotty, S. (2021) Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 184(4), 861-880.
[41] Mudd, P. A., Remy, K. E. (2021) Prolonged adaptive immune activation in COVID-19: implications for maintenance of long-term immunity? The Journal of Clinical Investigation, 131(1), 1-4.
[42] Raman, B., Bluemke, D. A., Lüscher, T. F., Neubauer, S. (2022) Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. European Heart Journal, 43(11), 1157-1172.
[43] Subramanian, A., Nirantharakumar, K., Hughes, S., Myles, P., Williams, T., Gokhale, K. M., Haroon, S. (2022) Symptoms and risk factors for long COVID in non-hospitalized adults. Nature Medicine, 28(8), 1706-1714.
[44] Al-Aly, Z., Bowe, B., Xie, Y. (2022) Long COVID after breakthrough SARS-CoV-2 infection. Nature Medicine, 28(7), 1461-1467.
[45] Appelman, B., Charlton, B. T., Goulding, R. P., Kerkhoff, T. J., Breedveld, E. A., Noort, W., Wüst, R. C. (2024) Muscle abnormalities worsen after post-exertional malaise in long COVID. Nature Communications, 15(1), 17.
[46] Kerget, B., Çil, G., Araz, Ö., Alper, F., Akgün, M. (2023) Comparison of two antifibrotic treatments for lung fibrosis in post-COVID-19 syndrome: a randomized, prospective study. Medicina Clínica, 160(12), 525-530.
[47] Bourmistrova, N. W., Solomon, T., Braude, P., Strawbridge, R., Carter, B. (2022) Long-term effects of COVID-19 on mental health: a systematic review. Journal of Affective Disorders, 299, 118-125.
[48] Herrera-Escobar, J. P., Wang, J., Lamarre, T., Patel, N., Orlas, C. P., El Moheb, M., Nehra, D. (2021) Impact of the COVID-19 pandemic on long-term recovery from traumatic injury. Annals of Surgery, 274(6), 913-920.
[49] Glinianowicz, M., Ciura, D., Burnatowska, E., Olszanecka-Glinianowicz, M. (2023) Psychological effects of the COVID-19 pandemic – what do we know about them? European Review for Medical & Pharmacological Sciences, 27(13), 6445-6458.
[50] Javed, N., Ijaz, Z., Khair, A. H., Dar, A. A., Lopez, E. D., Abbas, R., Sheikh, A. B. (2022) COVID-19 loss of taste and smell: potential psychological repercussions. Pan African Medical Journal, 43(38). 1-11.
[51] Roever, L., Cavalcante, B. R. R., Improta-Caria, A. C. (2023) Long-term consequences of COVID-19 on mental health and the impact of a physically active lifestyle: a narrative review. Annals of General Psychiatry, 22(1), 19.
[52] Prime, H., Wade, M., Browne, D. T. (2020) Risk and resilience in family well-being during the COVID-19 pandemic. American Psychologist, 75(5), 631.
[53] Hu, B., Ruan, Y., Liu, K., Wei, X., Wu, Y., Feng, H., Wang, T. (2021) A mid-to-long term comprehensive evaluation of psychological distress and erectile function in COVID-19 recovered patients. The Journal of Sexual Medicine, 18(11), 1863-1871.
[54] Mazza, M. G., Palladini, M., Poletti, S., Benedetti, F. (2022) Post-COVID-19 depressive symptoms: epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs, 36(7), 681-702.
[55] Rong, Z., Mai, H., Ebert, G., Kapoor, S., Puelles, V. G., Czogalla, J., Ertürk, A. (2024) Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host & Microbe, 32(12), 2112-2130.
[56] Chan, L., Pinedo, K., Stabile, M. A., Hamlin, R. E., Pienkos, S. M., Ratnasiri, K., Blish, C. A. (2025) Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection. Science Translational Medicine, 17(783), eadq1086.
[57] Gao, P., Liu, J., Liu, M. (2022) Effect of COVID-19 vaccines on reducing the risk of long COVID in the real world: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 19(19), 12422.
[58] Notarte, K. I., Catahay, J. A., Velasco, J. V., Pastrana, A., Ver, A. T., Pangilinan, F. C., Fernández-de-Las-Peñas, C. (2022) Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: a systematic review. EClinicalMedicine, 53.
[59] Bij de Vaate, E., Gerrits, K. H., Goossens, P. H. (2020) Personalized recovery of severe COVID19: rehabilitation from the perspective of patient needs. European Journal of Clinical Investigation, 50(7), e13325.
[60] Bhaiyat, A. M., Sasson, E., Wang, Z., Khairy, S., Ginzarly, M., Qureshi, U., Efrati, S. (2022) Hyperbaric oxygen treatment for long coronavirus disease-19: a case report. Journal of Medical Case Reports, 16(1), 80.
[61] Donelli, D., Antonelli, M., Valussi, M. (2023) Olfactory training with essential oils for patients with post-COVID-19 smell dysfunction: A case series. European Journal of Integrative Medicine, 60, 102253.
[62] Scheiber, B., Spiegl, C., Wiederin, C., Schifferegger, E., Schiefermeier-Mach, N. (2021) Post-COVID-19 rehabilitation: perception and experience of Austrian physiotherapists and physiotherapy students. International Journal of Environmental Research and Public Health, 18(16), 8730.
[63] Smith, J. A., Checkland, K., Sidhu, M., Hammond, J., Parkinson, S. (2021) Primary care networks: Are they fit for the future? The British Journal of General Practice, 71(704), 106.
[64] Willan, J., King, A. J., Jeffery, K., Bienz, N. (2020) Challenges for NHS hospitals during COVID-19 epidemic. BMJ, 368.
[65] Abbasi, J. (2022) The US now has a research plan for long COVID – Is it enough? JAMA, 328(9), 812-814.
[66] Koumpias, A. M., Schwartzman, D., Fleming, O. (2022) Long-haul COVID: healthcare utilization and medical expenditures 6 months post-diagnosis. BMC Health Services Research, 22(1), 1010.
[67] Barker, K. K., Whooley, O., Madden, E. F., Ahrend, E. E., Greene, R. N. (2024) The long tail of COVID and the tale of long COVID: diagnostic construction and the management of ignorance. Sociology of Health & Illness, 46(S1), 189-207.
[68] Antonelli, M., Pujol, J. C., Spector, T. D., Ourselin, S., Steves, C. J. (2022) Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. The Lancet, 399(10343), 2263-2264.
[69] Silva, K. M., Freitas, D. C., Medeiros, S. S., Miranda, L. V., Carmo, J. B., Silva, R. G., Silvestre, O. M. (2023) Prevalence and predictors of COVID-19 long-term symptoms: a cohort study from the Amazon Basin. The American Journal of Tropical Medicine and Hygiene, 109(2), 466.
[70] Zhang, J., Kuang, T., Liu, X. (2024) Advances in researches on long coronavirus disease in children: a narrative review. Translational Pediatrics, 13(2), 318.
[71] George, P. M., Reed, A., Desai, S. R., Devaraj, A., Faiez, T. S., Laverty, S., Singanayagam, A. (2022) A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Science Translational Medicine, 14(671), eabo5795.
[72] O’Hare, A. M., Vig, E. K., Iwashyna, T. J., Fox, A., Taylor, J. S., Viglianti, E. M., Ioannou, G. N. (2022) Complexity and challenges of the clinical diagnosis and management of long COVID. JAMA Network Open, 5(11), e2240332-e2240332.
[73] Zhou, T., Xu, C., Wang, C., Sha, S., Wang, Z., Zhou, Y., Wang, Q. (2022) Burnout and well-being of healthcare workers in the post-pandemic period of COVID-19: a perspective from the job demands-resources model. BMC Health Services Research, 22(1), 284.
[74] Figueiredo, B., Sheahan, J., Luo, S., Bird, S., Wan, D. W. L., Xenos, S., Zheng, Z. (2024) Journey mapping long COVID: agency and social support for long-hauling. Social Science & Medicine, 340, 116485.

Share and Cite
Zhang, B., Cui, X., Wang, Z., Gao, Z., Meng, F., Liu, K., Qian, Y. (2025) Review and Prospect of Post-COVID-19 Syndrome: New Challenges Faced by Public Health Nursing in the Future. Journal of Disease and Public Health, 1(2), 31-41. https://doi.org/10.71052/jdph/SHDW4714

Published

07/01/2026