Explore the Advancements in Research on Pyroptosis of Microglial Cells in Acute Carbon Monoxide Poisoning

Mengyang Li1, Jing Yang1, Liuxu Wang1, Haiyu Xue1, Xiaoqing Zhao1, Yaoyue Wang1, Taojie Huang1, Mingyao Jiang1, Xuanyan Ren1, Yuru Xia1, Mingxuan Gao1, Xuyan Deng1, Yang Yuan1, Si Liu1, Yixuan He2, Siyu Zhang1, *
1North Henan Medical University, Xinxiang 453500, China
2Henan Medical University, Xinxiang 453003, China
*Corresponding email: shiyu15937135743@163.com
https://doi.org/10.71052/jdph/STQJ7584

Carbon monoxide (CO), a pervasive environmental toxicant, has emerged as one of the leading causes of fatal poisoning. In the short term, inhalation of excessive amounts of this gas can lead to a systemic illness, primarily affecting the central nervous system, known as acute carbon monoxide poisoning (ACMP). Despite numerous hypotheses proposed by scholars – such as the apoptosis and autophagy theories, ischemia-reperfusion injury and free radical hypotheses, and the excitatory amino acid hypothesis – the precise mechanisms of action remain inadequately elucidated. Consequently, the primary aim of this study is to outline recent research into focal areas and elucidate the critical role of microglial pyroptosis in the molecular mechanisms underlying ACMP. It is anticipated that this will provide a theoretical foundation for a deeper understanding of the pathological mechanisms of ACMP and the exploration of novel therapeutic drug targets.

References
[1] Savioli, G., Gri, N., Ceresa, I. F., Piccioni, A., Zanza, C., Longhitano, Y., Candura, S. M. (2024) Carbon monoxide poisoning: from occupational health to emergency medicine. Journal of Clinical Medicine, 13(9), 2466.
[2] Dent, M. R., Rose, J. J., Tejero, J., Gladwin, M. T. (2024) Carbon monoxide poisoning: from microbes to therapeutics. Annual Review of Medicine, 75(1), 337-351.
[3] Huang, Y. Q., Peng, Z. R., Huang, F. L., Yang, A. L. (2020) Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regeneration Research, 15(12), 2286-2295.
[4] Wang, R., Li, K., Wang, Z., Wang, Y., Zhang, H. (2024) Changes of nuclear factor Kappa-B pathway activity in hippocampus after acute carbon monoxide poisoning and its role in nerve cell injury. Molecular Neurobiology, 61(8), 5206-5215.
[5] Jiang, W., Zhao, Z., Wu, Q., Wang, L., Zhou, L., Li, D., Tan, Y. (2021) Study on brain structure network of patients with delayed encephalopathy after carbon monoxide poisoning: based on diffusion tensor imaging. La Radiologia Medica, 126(1), 133-141.
[6] Xu, Q., Rose, J. J., Chen, X., Wang, L., DeMartino, A. W., Dent, M. R., Gladwin, M. T. (2022) Cell-free and alkylated hemoproteins improve survival in mouse models of carbon monoxide poisoning. JCI Insight, 7(21), e153296.
[7] Jiang, M., Yu, C. H., Xu, Z., Qin, Z. (2024) Binding of carbon monoxide to hemoglobin in an oxygen environment: force field development for molecular dynamics. Journal of Chemical Theory and Computation, 20(10), 4229-4238.
[8] Trujillo-Rangel, W. Á., García-Valdés, L., Méndez-del Villar, M., Castañeda-Arellano, R., Totsuka-Sutto, S. E., García-Benavides, L. (2022) Therapeutic targets for regulating oxidative damage induced by ischemia-reperfusion injury: a study from a pharmacological perspective. Oxidative Medicine and Cellular Longevity, 2022(1), 8624318.
[9] Coburn, R. F. (2022) Carbon monoxide (CO), nitric oxide, and hydrogen sulfide signaling during acute CO poisoning. Frontiers in Pharmacology, 12, 830241.
[10] Ai, Y., Meng, Y., Yan, B., Zhou, Q., Wang, X. (2024) The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Molecular Cell, 84(1), 170-179.
[11] Angelova, P. R., Myers, I., Abramov, A. Y. (2023) Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biology, 60, 102598.
[12] Newton, K., Strasser, A., Chan, F. K.-M., Condon, S. M., Darding, M., Dillon, C. P., Drag, M., Fulda, S., Ganz, M., Hornung, V., Ichijo, H., Kearney, C. J., Kelly, G. L., Kist, M., Komiyama, T., Koonin, E. V., Korsmeyer, S. J., Kraft, C., Lamkanfi, M., Green, D. R. (2024) Cell death. Cell, 187(2), 235-256.
[13] Zhang, Y., Lu, Q., Jia, J., Li, S., Li, Z., Wu, H., Zhang, B., Wu, Y. (2021) Multicenter retrospective analysis of the risk factors for delayed neurological sequelae after acute carbon monoxide poisoning. The American Journal of Emergency Medicine, 46, 165-169.
[14] Li, N., Meng, X. E., Li, H., Fan, D. F., Pan, S. Y. (2018) Efficacy of combined glucocorticoid and hyperbaric oxygen therapy against delayed encephalopathy after carbon monoxide poisoning, and its effect on expression of immune-associated cytokines. Tropical Journal of Pharmaceutical Research, 17(6), 1177-1183.
[15] Warenits, A.-M., Mäger, J., Sterz, F., Ettl, F., Haugk, M., Schriefl, C., Clodi, C., Weihs, W., Högler, S., Scherer, T., Fischer, H. (2020) Motor cortex and hippocampus display decreased heme oxygenase activity 2 weeks after ventricular fibrillation cardiac arrest in rats. Frontiers in Medicine, 7, 254.
[16] Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., Zeng, Y., Cai, J., Zhang, D. W., Zhao, W. (2021) Autophagy and mitochondrial homeostasis during infection: a double-edged sword. Frontiers in Cell and Developmental Biology, 9, 738932.
[17] LIU, P., TIAN, W.S. (2019) The study of pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning. Inner Mongolia Medical Journal, 51(9), 1043-1046.
[18] Alva, R., Mirza, M., Baiton, A., Lazuran, L., Samokysh, L., Bobinski, A., Cowan, A. (2022) Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biology and Toxicology, 39(1), 111-143.
[19] Wang, M., Tan, J., Miao, Y., Zhang, Q. (2019) Role of oxidative stress in urine albumin overload-induced autophagy in renal proximal tubular epithelial cells. Chinese Journal of Geriatrics, 312-316.
[20] Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M., Oliver, F. J. (2019) Self-defense of macrophages against oxidative injury: Fighting for their own survival. Redox Biology, 26,101261.
[21] Su, L.J., Zhang, J.H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., Peng, Z.-Y. (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019, 5080843.
[22] Fuschillo, S., De Felice, C., Balzano, G., Gaudiosi, C. (2020) Nitric oxide and hydrogen sulfide: a nice pair in the respiratory system. Current Medicinal Chemistry, 27(42), 7136-7148.
[23] Palmieri, E., Raineri, D., Padroni, C., Hirsch, E. (2021) Nitric oxide mediates direct restriction of pyruvate dehydrogenase complex via generation of nitroxyl during macrophage polarization. The FASEB Journal, 35(1), 03596.
[24] Wang, R., Wang, M., He, S., Sun, G., Sun, X. (2020) Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents. Frontiers in Pharmacology, 11, 872.
[25] Angelova, P. R., Abramov, A. Y. (2021) Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biology and Medicine, 173, 52-63.
[26] Candelario. Jalil, E., Dijkhuizen, R. M., Magnus, T. (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke, 53(5), 1473-1486.
[27] Sadzak, A., Milićević, B., Ivošević, T., Jurašin, D. D. (2020) The structural integrity of the model lipid membrane during induced lipid peroxidation: the role of flavonols in the inhibition of lipid peroxidation. Antioxidants, 9(5), 430.
[28] Jones, C. L., Stevens, B. M., D’Alessandro, A., Culp-Hill, R., Reisz, J. A., Pei, S., Gustafson, A., Khan, N., DeGregori, J., Pollyea, D. A. (2019) Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood, 134(4), 389-394.
[29] Granger, D. N., Kvietys, P. R. (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biology, 6, 524-551.
[30] MacMullin, P., Hodgson, N., Damar, U. (2020) Increase in seizure susceptibility after repetitive concussion results from oxidative stress, parvalbumin-positive interneuron dysfunction and biphasic increases in glutamate/GABA ratio. Cerebral Cortex, 30(12), 6108-6120.
[31] Malyala, S., Zhang, Y., Strubbe, J. O., Bazil, J. N. (2019) Calcium phosphate precipitation inhibits mitochondrial energy metabolism. PLOS Computational Biology, 15(1), e1006719.
[32] Stewart, A. F. R., Chen, H.-H. (2022) N-methyl-D-aspartate receptor functions altered by neuronal PTP1B activation in Alzheimer’s disease and schizophrenia models. Neural Regeneration Research, 17(10), 2208-2210.
[33] Viscomi, C., Zeviani, M. (2019) Breathe: Your mitochondria will do the rest… if they are healthy! Cell Metabolism, 30(4), 628-629.
[34] Figueiredo-Pereira, C., Dias-Pedroso, D., Soares, N. L., Vieira, H. L. A. (2020) CO-mediated cytoprotection is dependent on cell metabolism modulation. Redox Biology, 32, 101470.
[35] Rose, J. J., Wang, L., Xu, Q., McTiernan, C. F., Shiva, S., Tejero, J., Gladwin, M. T. (2017) Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. American Journal of Respiratory and Critical Care Medicine, 195(5), 596-606.
[36] Shields, D. C., Haque, A., Banik, N. L. (2020) Neuroinflammatory responses of microglia in central nervous system trauma. Journal of Cerebral Blood Flow & Metabolism, 40(1), 25-33.
[37] Zhang, S. (2019) Microglial activation after ischaemic stroke. Stroke and Vascular Neurology, 4(2), 71-74.
[38] Yu, T., Zhang, X., Shi, H., Tian, J., Sun, L., Hu, P., Sun, H., Zhou, X. (2019) P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death & Disease, 10(3), 165.
[39] Palizgir, M. T., Akhtari, M., Shahram, F., Davatchi, F. (2018) Curcumin reduces the expression of interleukin 1β and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with Behcet’s disease. Immunopharmacology and Immunotoxicology, 40(4), 297-302.
[40] Nirmala, J. G., Lopus, M. (2020) Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145-164.
[41] Ashida, H., Suzuki, T., Sasakawa, C. (2021) Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Current Opinion in Microbiology, 59, 1-7.
[42] Hos, N. J., Ganesan, R., Gutiérrez, S., Hos, D., Klimek, J., Abdullah, Z., Robinson, N. (2017) Type I interferon enhances necroptosis of Salmonella Typhimurium-infected macrophages by impairing antioxidative stress responses. Journal of Cell Biology, 216(12), 4107-4121.
[43] Ma, D., Yang, B., Guan, B., Song, L., Liu, Q., Fan, Y., Xu, H. (2021) A bibliometric analysis of pyroptosis from 2001 to 2021. Frontiers in Immunology, 12, 731933.
[44] Zhou, Y. S., Yu, L. H., Dong, L. (2023) Molecular mechanisms of cellular pyroptosis and its trophic regulation. Journal of Animal Nutrition, 35(12), 7648-7657.
[45] Chang, L., Wang, X. H., Zhang, Y., Wang, H., Li, M. (2019) Progress in the TLR4/NF-κB signaling pathway in brain injury in preterm infants. The World’s Latest Medical Information Abstract, 19(35), 131-132.
[46] Wright, S. S., Vasudevan, S. O., Rathinam, V. A. (2022) Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis. Journal of Molecular Biology, 434(4), 167245.
[47] Gram, A. M., Booty, L. M., Bryant, C. E. (2019) Chopping GSDMD: Caspase-8 has joined the team of pyroptosis-mediating caspases. The EMBO Journal, 38(10), e102065.

Share and Cite
Li, M., Yang, J., Wang, L., Xue, H., Zhao, X., Wang, Y., Huang, T., Jiang, M., Ren, X., Xia, Y., Gao, M., Deng, X., Yuan, Y., Liu, S., He, Y., Zhang, S. (2025) Explore the Advancements in Research on Pyroptosis of Microglial Cells in Acute Carbon Monoxide Poisoning. Journal of Disease and Public Health, 1(2), 75-84. https://doi.org/10.71052/jdph/STQJ7584

Published

26/01/2026