Identification of Fibroblast Related Genes as Biomarkers for Prognosis in Laryngeal Cancer Patients

Wenjie He1, *, Xin Zhou1, Huiyi Yang2
1Department of Otolaryngology, Head and Neck Surgery, People’s Hospital of Anshun City, Anshun 561000, China
2Hunan Provincial Institute of Occupational Disease Prevention and Treatment, Changsha 410008, China
*Corresponding email: 15692744170@163.com

Recent advances in stromal biology have established fibroblast-related genes (FRGs) as critical regulators of oncogenic progression, particularly through tumor-stroma crosstalk and metastatic niche formation. However, their roles in Laryngeal Cancer (LC) remain unclear. Here, potential FRG based biomarkers were investigated as candidates for further study and therapeutic targeting. LC transcriptomic profiles were retrieved from GEO and TCGA. The intersection of FRG, and tumor-specific differentially expressed genes identified initial candidates. A prognostic model was constructed using Cox regression validated by Schoenfeld residuals, enhanced with LASSO-SVM integration. A clinical nomogram incorporating risk stratification demonstrated strong discriminative capacity (AUCs 0.82-0.91). Multi-modal investigations with GSEA, CIBERSORTx, MutSigCV, and GDSC databases elucidated therapeutic vulnerabilities, and a four-gene signature emerged as a diagnostic biomarker. Stratification into high-risk (HRG) and low-risk (LRG) groups revealed significantly reduced survival in HRG (P <0.001). A nomogram including risk score, gender, and nodal status achieved 82% predictive accuracy. HRG showed Hedgehog pathway activation and a 15% increase in M2 macrophage infiltration. TP53 alterations were frequent in both HRG (90%) and LRG (84%). Drug sensitivity prediction revealed 3.2-fold resistance to gefitinib in HRG (IC50 shift > 500 nM). This study identifies four FRG based biomarkers for precise LC risk prediction and highlights their potential therapeutic implications.

References
[1] Igissin, N., Zatonskikh, V., Telmanova, Z., Tulebaev, R., Moore, M. (2023) Laryngeal Cancer: Epidemiology, etiology, and prevention: A narrative review. Iranian Journal of Public Health, 52(11), 2248.
[2] Nocini, R., Lippi, G., Mattiuzzi, C. (2024) Mortality of Laryngeal Cancer before and during the COVID-19 pandemic. COVID, 4(5), 652-657.
[3] Śnit, M., Misiołek, M., Ścierski, W., Koniewska, A., Stryjewska-Makuch, G., Okła, S., Grzeszczak, W. (2021) DIAPH2, PTPRD and HIC1 gene polymorphisms and Laryngeal Cancer risk. International Journal of Environmental Research and Public Health, 18(14), 7486.
[4] Liu, X., Li, W., Xu, L., Chen, X., Zhao, R., Guo, Y., Liu, M. (2023) Chidamide, a novel histone deacetylase inhibitor, inhibits Laryngeal Cancer progression in vitro and in vivo. The International Journal of Biochemistry & Cell Biology, 158, 106398.
[5] Obid, R., Redlich, M., Tomeh, C. (2019) The treatment of Laryngeal Cancer. Oral and Maxillofacial Surgery Clinics, 31(1), 1-11.
[6] Alshwayyat, S., Kamal, T. F., Alshwayyat, T. A., Alshwayyat, M., Hanifa, H., Odat, R. M., Qassem, K. (2025) Machine learning in personalized Laryngeal Cancer management: insights into clinical characteristics, therapeutic options, and survival predictions. European Archives of Oto-Rhino-Laryngology, 282(2), 945-960.
[7] Zhou, W., Li, J., Feng, H., Xu, S., Liu, T., Wang, D., Qin, G. (2024) Application of pedicled supraclavicular flaps in hypopharyngectomy with preservation of laryngeal function. BMC surgery, 24(1), 417.
[8] Obradovic, A., Graves, D., Korrer, M., Wang, Y., Roy, S., Naveed, A., Kim, Y. J. (2022) Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer. Clinical Cancer Research, 28(10), 2094-2109.
[9] Bhat, A. A., Yousuf, P., Wani, N. A., Rizwan, A., Chauhan, S. S., Siddiqi, M. A., Macha, M. A. (2021) Tumor microenvironment: An evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduction and Targeted Therapy, 6(1), 12.
[10] Hu, M., Zhang, S. (2022) Expression and clinical significance of FGFR1 and FGFR2 in laryngeal squamous cell carcinoma. Translational Cancer Research, 11(9), 3222.
[11] Starska, K., Forma, E., Lewy-Trenda, I., Stasikowska-Kanicka, O., Skóra, M., Bryś, M. (2018) Fibroblast growth factor receptor 1 and 3 expression is associated with regulatory PI3K/AKT kinase activity, as well as invasion and prognosis, in human Laryngeal Cancer. Cellular Oncology, 41(3), 253-268.
[12] Liu, J., Lu, Y., Liu, Y., Zhang, W., Xian, S., Wang, S., Zhang, Y. (2024) A gene signature linked to fibroblast differentiation for prognostic prediction of mesothelioma. Cell & Bioscience, 14(1), 33.
[13] Gustavsson, E. K., Zhang, D., Reynolds, R. H., Garcia-Ruiz, S., Ryten, M. (2022) Ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics, 38(15), 3844-3846.
[14] Gu, Z., Hübschmann, D. (2022) Make interactive complex heatmaps in R. Bioinformatics, 38(5), 1460-1462.
[15] Liu, T. T., Li, R., Huo, C., Li, J. P., Yao, J., Ji, X. L., Qu, Y. Q. (2021) Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis. Frontiers in Cell and Developmental Biology, 9, 682002.
[16] Engebretsen, S., Bohlin, J. (2019) Statistical predictions with glmnet. Clinical Epigenetics, 11(1), 123.
[17] Zhang, S., Sun, L., Cai, D., Liu, G., Jiang, D., Yin, J., Tan, L. (2023) Development and validation of PET/CT-based nomogram for preoperative prediction of lymph node status in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 30(12), 7452-7460.
[18] Zhang, Z., Cortese, G., Combescure, C., Marshall, R., Lee, M., Lim, H. J., Haller, B. (2018) Overview of model validation for survival regression model with competing risks using melanoma study data. Annals of Translational Medicine, 6(16), 325.
[19] Pan, X., Jin, X., Wang, J., Hu, Q., Dai, B. (2021) Placenta inflammation is closely associated with gestational diabetes mellitus. American Journal of Translational Research, 13(5), 4068.
[20] Lu, L., Wang, H., Fang, J., Zheng, J., Liu, B., Xia, L., Li, D. (2022) Overexpression of OAS1 is correlated with poor prognosis in pancreatic cancer. Frontiers in Oncology, 12, 944194.
[21] Robles-Jimenez, L. E., Aranda-Aguirre, E., Castelan-Ortega, O. A., Shettino-Bermudez, B. S., Ortiz-Salinas, R., Miranda, M., Gonzalez-Ronquillo, M. (2021) Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals, 12(1), 60.
[22] Wei, E., Reisinger, A., Li, J., French, L. E., Clanner-Engelshofen, B., Reinholz, M. (2022) Integration of scRNA-Seq and TCGA RNA-Seq to analyze the heterogeneity of HPV+ and HPV-cervical cancer immune cells and establish molecular risk models. Frontiers in Oncology, 12, 860900.
[23] Tang, S., Zhao, Z., Wang, Y., El Akkawi, M. M., Tan, Z., Liu, D., Liu, H. (2022) DHRS7 is an immune-related prognostic biomarker of KIRC and pan-cancer. Frontiers in Genetics, 13, 1015844.
[24] Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., Koeffler, H. P. (2018) Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Research, 28(11), 1747-1756.
[25] Wang, W., Lu, Z., Wang, M., Liu, Z., Wu, B., Yang, C., Gong, P. (2022) The cuproptosis-related signature associated with the tumor environment and prognosis of patients with glioma. Frontiers in Immunology, 13, 998236.
[26] Liu, X., Lu, Y., Huang, J., Xing, Y., Dai, H., Zhu, L., Su, S. (2022) CD16+fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell, 40(11), 1341-1357.
[27] Yang, M., Huang, H., Zhang, Y., Wang, Y., Zhao, J., Lee, P., Qu, S. (2024) Identification and validation of KIF20A for predicting prognosis and treatment outcomes in patients with breast cancer. Scientific Reports, 14(1), 31543.
[28] Sun, Y., Chen, S., Lu, Y., Xu, Z., Fu, W., Yan, W. (2024) Single-cell transcriptomic analyses of tumor microenvironment and molecular reprograming landscape of metastatic laryngeal squamous cell carcinoma. Communications Biology, 7(1), 63.
[29] Ambrogetti, R., Taha, O., Saeed, M., Patel, P., Rahman, F. (2024) Tumour in the dark: A challenging case of osteomalacia. Oxford Medical Case Reports, (12), 159.
[30] Kim, M. J., Hong, J., Chang, H. W., Lee, Y. H., Myong, J. P., Jung, A. R., Kwon, M. (2025) Autophagy activation in response to cigarette smoke: Exploring the disparity in Laryngeal Cancer incidence and outcomes between sexes in South Korea. Translational Oncology, 52, 102229.
[31] Eckersley-Maslin, M. A., Parry, A., Blotenburg, M., Krueger, C., Ito, Y., Franklin, V. N. R., Reik, W. (2020) Epigenetic priming by Dppa2 and 4 in pluripotency facilitates multi-lineage commitment. Nature Structural & Molecular Biology, 27(8), 696-705.
[32] Eckersley-Maslin, M. A. (2020) Keeping your options open: Insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity. Biochemical Society Transactions, 48(6), 2891-2902.
[33] Wu, R., Sun, C., Chen, X., Yang, R., Luan, Y., Zhao, X., Shu, M. (2024) NSUN5/TET2-directed chromatin-associated RNA modification of 5-methylcytosine to 5-hydroxymethylcytosine governs glioma immune evasion. Proceedings of the National Academy of Sciences, 121(14), e2321611121.
[34] Zhang, X. W., Wu, L. Y., Liu, H. R., Huang, Y., Qi, Q., Zhong, R., Wu, H. G. (2022) NSUN5 promotes progression and predicts poor prognosis in hepatocellular carcinoma. Oncology letters, 24(6), 439.
[35] Jiang, Z., Li, S., Han, M. J., Hu, G. M., Cheng, P. (2020) High expression of NSUN5 promotes cell proliferation via cell cycle regulation in colorectal cancer. American Journal of Translational Research, 12(7), 3858.
[36] Huynh, M. B., Rebergue, N., Merrick, H., Gomez-Henao, W., Jospin, E., Biard, D. S. F., Papy-Garcia, D. (2022) HS3ST2 expression induces the cell autonomous aggregation of tau. Scientific Reports, 12(1), 10850.
[37] Nonnecke, E. B., Castillo, P. A., Johansson, M. E., Hollox, E. J., Shen, B., Lönnerdal, B., Bevins, C. L. (2022) Human intelectin‐2 (ITLN2) is selectively expressed by secretory Paneth cells. The FASEB Journal, 36(3), e22200.
[38] Jiang, J. (2022) Hedgehog signaling mechanism and role in cancer. Seminars in Cancer Biology, 85, 107-122.
[39] Kuehn, J., Espinoza‐Sanchez, N. A., Teixeira, F. C., Pavão, M. S., Kiesel, L., Győrffy, B., Götte, M. (2021) Prognostic significance of hedgehog signaling network‐related gene expression in breast cancer patients. Journal of Cellular Biochemistry, 122(5), 577-597.
[40] Wang, Z., Strasser, A., Kelly, G. L. (2022) Should mutant TP53 be targeted for cancer therapy? Cell Death & Differentiation, 29(5), 911-920.
[41] Luo, J., Mei, Z., Lin, S., Xing, X., Qian, X., Lin, H. (2023) Integrative pan-cancer analysis reveals the importance of PAQR family in lung cancer. Journal of Cancer Research and Clinical Oncology, 149(12), 10149-10160.
[42] Lu, N., Liu, J., Xu, M., Liang, J., Wang, Y., Wu, Z., Diao, F. (2021) CSMD3 is associated with tumor mutation burden and immune infiltration in ovarian cancer patients. International Journal of General Medicine, 7647-7657.
[43] Kim, H. A. J., Zeng, P. Y., Shaikh, M. H., Mundi, N., Ghasemi, F., Di Gravio, E., Nichols, A. C. (2021) All HPV-negative head and neck cancers are not the same: Analysis of the TCGA dataset reveals that anatomical sites have distinct mutation, transcriptome, hypoxia, and tumor microenvironment profiles. Oral Oncology, 116, 105260.
[44] Gao, G., Shi, X., Shen, J. (2021) HS3ST2 and its related molecules as potential biomarkers for predicting lymph node metastasis in patients with colorectal cancer. OncoTargets and Therapy, 3881-3894.

Share and Cite
He, W., Zhou, X., Yang, H. (2025) Identification of Fibroblast Related Genes as Biomarkers for Prognosis in Laryngeal Cancer Patients. Journal of Disease and Public Health, 1(1), 41-65.

Published

14/11/2025