This study systematically elucidates the central regulatory function of glutaminase (GLS) genes in pan-cancer contexts and their role in remodeling the tumor immune microenvironment. Through the integration and analysis of extensive pan-cancer datasets, it was revealed that GLS expression exhibits a highly cancer-specific pattern and is associated with a “double-edged sword” prognostic value, reflecting the cancer type’s dependence on the “ammonia death” threshold effect. The primary innovation of this research lies in demonstrating that GLS influence genomic stability through metabolism-epigenetic cross-dialogue, thereby driving unique immune microenvironment regulation. Specifically, GLS promote immune recognition while simultaneously inducing excessive ammonia-induced “ammonia death” of CD8⁺ T cells, leading to immune exhaustion. This mechanism has been corroborated by multiple algorithms across various cancer types. This study has for the first time established a precise intervention framework based on GLS expression: Targeting and inhibiting the GLS activity of high-expression cancer types or activating the urea cycle detoxification pathway (CPS1) of low-expression cancer types can effectively enhance the immune response. The establishment of innovative serum ammonia metabolism markers and the ultimate confirmation of GLS as the core hub integrating the three dimensions of metabolism, genomics and immunity have laid a theoretical foundation for tumor synergistic therapy targeting ammonia metabolism.
References
[1] Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., Newsholme, P. (2018) Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients, 10(11), 1564.
[2] Weiner, I. D., Verlander, J. W. (2017) Ammonia transporters and their role in acid-base balance. Physiological Reviews, 97(2), 465-494.
[3] Li, D., Cao, D., Zhang, Y., Yu, X., Wu, Y., Jia, Z., Jiang, Z., Cao, X. (2025) Integrative pan-cancer analysis and experiment validation identified GLS as a biomarker in tumor progression, prognosis, immune microenvironment, and immunotherapy. Scientific Reports, 15(1), 525.
[4] Zhang, H., Liu, J., Yuan, W., Zhang, Q., Luo, X., Li, Y., Peng, Y., Feng, J., Liu, X., Chen, J., Zhou, Y., Lv, J., Zhou, N., Ma, J., Tang, K., Huang, B. (2024) Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8+ T cells. Nature Cell Biology, 26(11), 1892-1902.
[5] Luo, Y., Zhang, S., Xie, H., Su, Q., He, S., Lei, Z. (2023) Prognosis and immunotherapy significances of a cancer-associated fibroblasts-related gene signature in lung adenocarcinoma. Cellular and Molecular Biology, 69(14), 51-61.
[6] Saha, S. K., Islam, S. R., Abdullah-Al-Wadud, M., Islam, S., Ali, F., Park, K. S. (2019) Multiomics analysis reveals that GLS and GLS2 differentially modulate the clinical outcomes of cancer. Journal of Clinical Medicine, 8(3), 355.
[7] Lee, C. M., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., Gonzalez, J. N., Kent, W. J. (2020) UCSC Genome Browser enters 20th year. Nucleic Acids Research, 48(D1), D756-D761.
[8] Chen, F., Fan, Y., Liu, X., Zhang, J., Shang, Y., Zhang, B., Tan, K. (2022) Pan-cancer integrated analysis of HSF2 expression, prognostic value and potential implications for cancer immunity. Frontiers in Molecular Biosciences, 8, 789703.
[9] Cappell, K. M., Kochenderfer, J. N. (2023) Long-term outcomes following CAR T cell therapy: What we know so far. Nature Reviews Clinical Oncology, 20(6), 359-371.
[10] Austin, P. C., Fang, J., Lee, D. S. (2022) Using fractional polynomials and restricted cubic splines to model non – proportional hazards or time – varying covariate effects in the Cox regression model. Statistics in Medicine, 41(3), 612-624.
[11] Royston, P., Choodari-Oskooei, B., Parmar, M. K., Rogers, J. K. (2019) Combined test versus logrank/Cox test in 50 randomised trials. Trials, 20(1), 172.
[12] Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Treviño, V., Shen, H., Laird, P. W., Levine, D. A., Carter, S. L., Getz, G., Stemke-Hale, K., Mills, G. B., Verhaak, R. G. (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 4(1), 2612.
[13] Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., Liu, X. S. (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77(21), e108-e110.
[14] Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Alizadeh, A. A. (2015) Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453-457.
[15] Akoglu, H. (2018) User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93.
[16] Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J. S., Dobson, J., Urashima, M., Mc Henry, K. T., Pinchback, R. M., Ligon, A. H., Cho, Y. J., Haery, L., Greulich, H., Reich, M., Winckler, W., Meyerson, M. (2010) The landscape of somatic copy-number alteration across human cancers. Nature, 463(7283), 899-905.
[17] Jiang, F., Wu, C., Wang, M., Wei, K., Zhou, G., Wang, J. (2020) Multi-omics analysis of tumor mutation burden combined with immune infiltrates in melanoma. Clinica Chimica Acta, 511, 306-318.
[18] Wang, S. Y., Ni, X., Hu, K. Q., Meng, F. L., Li, M., Ma, X. L., Meng, T. T., Wu, H. H., Ge, D., Zhao, J., Li, Y., Su, G. H. (2020) Cilostazol alleviate nicotine induced cardiomyocytes hypertrophy through modulation of autophagy by CTSB/ROS/p38MAPK/JNK feedback loop. International Journal of Biological Sciences, 16(11), 2001.
[19] Zhu, J., Wang, J., Liu, H., Lei, T., Yang, J., Lan, S., Jian, H., Fang, H., Zhang, Y., Ren, K., Zhong, F. (2023) Crosstalk of cuproptosis- related prognostic signature and competing endogenous RNAs regulation in hepatocellular carcinoma. Aging (Albany NY), 15(23), 13901-13919.
[20] Ibar, C., Irvine, K. D. (2020) Integration of Hippo-YAP signaling with metabolism. Developmental Cell, 54(2), 256-267.
[21] Zhang, Y., Zheng, J. (2020) Functions of immune checkpoint molecules beyond immune evasion. Regulation of Cancer Immune Checkpoints: Molecular and Cellular Mechanisms and Therapy, 201-226.
[22] Zheng, J., Chen, P., Zhong, J., Cheng, Y., Chen, H., He, Y., Chen, C. (2021) HIF-1α in myocardial ischemia-reperfusion injury. Molecular Medicine Reports, 23(5), 352.
Share and Cite
Li, X., Lu, S., Nie, Y., Fang, J., Gao, S., Qi, W., Li, K., Zhang, T., Sima, J. (2025) Research on the Expression Pattern, Prognostic Value, and Immune Microenvironment Regulatory Mechanism of GLS Gene in Pan-cancer. Journal of Disease and Public Health, 1(2), 42-63. https://doi.org/10.71052/jdph/CCKU7032
